Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroendocrinology ; 113(2): 179-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35231920

RESUMO

Advances in the knowledge of the neuroendocrine system are closely related to the development of cellular imaging and labeling techniques. This synergy ranges from the staining techniques that allowed the first characterizations of the anterior pituitary gland, its relationship with the hypothalamus, and the birth of neuroendocrinology; through the development of fluorescence microscopy applications, specific labeling strategies, transgenic systems, and intracellular calcium sensors that enabled the study of processes and dynamics at the cellular and tissue level; until the advent of super-resolution microscopy, miniscopes, optogenetics, fiber photometry, and other imaging methods that allowed high spatiotemporal resolution and long-term three-dimensional cellular activity recordings in living systems in a conscious and freely moving condition. In this review, we briefly summarize the main contributions of cellular imaging techniques that have allowed relevant advances in the field of neuroendocrinology and paradigm shifts that have improved our understanding of the function of the hypothalamic-pituitary axes. The development of these methods and equipment is the result of the integration of knowledge achieved by the integration of several disciplines and effort to solve scientific questions and problems of high impact on health and society that this system entails.


Assuntos
Hipotálamo , Neuroendocrinologia , Sistemas Neurossecretores , Diagnóstico por Imagem
2.
Front Endocrinol (Lausanne) ; 11: 619352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584547

RESUMO

The pituitary is a master endocrine gland that developed early in vertebrate evolution and therefore exists in all modern vertebrate classes. The last decade has transformed our view of this key organ. Traditionally, the pituitary has been viewed as a randomly organized collection of cells that respond to hypothalamic stimuli by secreting their content. However, recent studies have established that pituitary cells are organized in tightly wired large-scale networks that communicate with each other in both homo and heterotypic manners, allowing the gland to quickly adapt to changing physiological demands. These networks functionally decode and integrate the hypothalamic and systemic stimuli and serve to optimize the pituitary output into the generation of physiologically meaningful hormone pulses. The development of 3D imaging methods and transgenic models have allowed us to expand the research of functional pituitary networks into several vertebrate classes. Here we review the establishment of pituitary cell networks throughout vertebrate evolution and highlight the main perspectives and future directions needed to decipher the way by which pituitary networks serve to generate hormone pulses in vertebrates.


Assuntos
Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/metabolismo , Redes e Vias Metabólicas/fisiologia , Hipófise/citologia , Hipófise/metabolismo , Animais , Células Endócrinas/metabolismo , Gonadotrofos/metabolismo , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Filogenia , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA