Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nutrients ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986122

RESUMO

In the context of the growing prevalence of type 2 diabetes (T2DM), control of postprandial hyperglycemia is crucial for its prevention. Blood glucose levels are determined by various factors including carbohydrate hydrolyzing enzymes, the incretin system and glucose transporters. Furthermore, inflammatory markers are recognized predictors of diabetes outcome. Although there is some evidence that isoflavones may exhibit anti-diabetic properties, little is known about to what extent their corresponding hydroxylated metabolites may affect glucose metabolism. We evaluated the ability of a soy extract before (pre-) and after (post-) fermentation to counteract hyperglycemia in vitro and in Drosophila melanogaster in vivo. Fermentation with Aspergillus sp. JCM22299 led to an enrichment of hydroxy-isoflavones (HI), including 8-hydroxygenistein, 8-hydroxyglycitein and 8-hydroxydaidzein, accompanied by an enhanced free radical scavenging activity. This HI-rich extract demonstrated inhibitory activity towards α-glucosidase and a reduction of dipeptidyl peptidase-4 enzyme activity. Both the pre- and post-fermented extracts significantly inhibited the glucose transport via sodium-dependent glucose transporter 1. Furthermore, the soy extracts reduced c-reactive protein mRNA and secreted protein levels in interleukin-stimulated Hep B3 cells. Finally, supplementation of a high-starch D. melanogaster diet with post-fermented HI-rich extract decreased the triacylglyceride content of female fruit flies, confirming its anti-diabetic properties in an in vivo model.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Isoflavonas , Animais , Feminino , Drosophila melanogaster/metabolismo , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/prevenção & controle , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Extratos Vegetais/farmacologia , Glucose
2.
Nutrients ; 12(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877869

RESUMO

Kuding tea (KT) is a traditional Chinese beverage rich in plant bioactives that may exhibit various health benefits. However, little is known about the safety of KT extract (KTE) when consumed long term at high doses as a dietary supplement. Therefore, in this study, we investigated aspects of the safety of KTE. Male C57BL/6 mice were fed a high-fat, high-fructose, Western-type diet (control) supplemented with either 12.88% γ-cyclodextrin (γCD), 7.12% KTE (comprising 0.15% ursolic acid, UA) encapsulated in 12.88% γCD (KTE-γCD), or 0.15% UA over a 6-week experimental period. The dietary treatments did not affect food intake, body weight or body composition. However, treatment with KTE-γCD, but not γCD and UA, increased liver weight and hepatic fat accumulation, which was accompanied by increased hepatic PPARγ and CD36 mRNA levels. KTE-γCD treatment elevated plasma cholesterol and CYP7A1 mRNA and protein levels compared to those in control mice. KTE-γCD substantially increased the mRNA and protein levels of hepatic CYP3A and GSTA1, which are central to the detoxification of drugs and xenobiotics. Furthermore, we observed a moderate elevation in hepatic CYP3A (5-fold change) and GSTA1 (1.7-fold change) mRNA levels in UA-fed mice. In vitro data collected in HepG2 cells indicated a dose-dependent increase in hepatic cytotoxicity in response to KTE treatment, which may have been partly mediated by UA. Overall, the present data may contribute to the safety assessment of KTE and suggest that KTE encapsulated in γCD affects liver fat storage and the hepatic phase I and phase II responses in mice.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Indução Enzimática/efeitos dos fármacos , Fígado/enzimologia , Extratos Vegetais/farmacologia , Chá/química , Tecido Adiposo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Composição Corporal/efeitos dos fármacos , Camellia sinensis/química , Suplementos Nutricionais , Células Hep G2 , Humanos , Fígado/anatomia & histologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Extratos Vegetais/química
3.
J Med Food ; 20(9): 846-854, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28622482

RESUMO

Type 2 diabetes mellitus (T2DM) is a common and increasingly prevalent metabolic disorder, and effective preventive strategies against this disease are needed. The aim of the present study was to evaluate the potential antidiabetic properties of a dietary apple/kale extract (AKE), which was rich in phlorizin and flavonoids, in laboratory mice. Mice were fed a control diet, a Western-type high-sugar, high-fat diet (WTD), or a WTD plus AKE for 10 weeks. Body weight, food and energy intake, body composition, and blood glucose level were recorded in addition to the postprandial rise in blood glucose concentration after a single administration of glucose (oral glucose tolerance test, OGTT). Furthermore, changes in glucose-induced short-circuit current (ISC) in response to AKE and phlorizin administration were evaluated in situ in intestinal tissues with Ussing chambers. In addition, the in vitro inhibition of α-glucosidase by AKE was determined. The present data suggest that supplementation of an AKE to a WTD significantly improved both blood glucose levels and OGTT in mice. Furthermore, in situ uptake of glucose was significantly inhibited by AKE. Finally, we showed that AKE significantly inhibits α-glucosidase activity in vitro. We conclude that AKE exhibits antidiabetic properties by a dual mechanism, including the inhibition of α-glucosidase and sodium-dependent glucose transporter 1 (SGLT1). Thus, AKE has the potential to serve as a natural plant bioactive compound for dietary prevention strategies against T2DM.


Assuntos
Brassica/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Malus/química , Extratos Vegetais/administração & dosagem , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Flavonoides/administração & dosagem , Teste de Tolerância a Glucose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Florizina/administração & dosagem , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
4.
Int J Mol Sci ; 18(6)2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28587122

RESUMO

Ageing is often accompanied by chronic inflammation. A fat- and sugar-rich Western-type diet (WTD) may accelerate the ageing phenotype. Cell culture studies have indicated that artepillin C-containing Brazilian green propolis exhibits anti-inflammatory properties. However, little is known regarding its anti-inflammatory potential in mouse liver in vivo. In this study, female C57BL/6NRj wild-type mice were fed a WTD, a WTD supplemented with Brazilian green propolis supercritical extract (GPSE) encapsulated in γ-cyclodextrin (γCD) or a WTD plus γCD for 10 weeks. GPSE-γCD did not affect the food intake, body weight or body composition of the mice. However, mRNA levels of the tumour necrosis factor α were significantly downregulated (p < 0.05) in these mice compared to those in the WTD-fed controls. Furthermore, the gene expression levels of other pro-inflammatory markers, including serum amyloid P, were significantly (p < 0.001) decreased following GPSE-γCD treatment. GPSE-γCD significantly induced hepatic ferritin gene expression (p < 0.01), which may contribute to its anti-inflammatory properties. Conversely, GPSE-γCD did not affect the biomarkers of endogenous antioxidant defence, including catalase, glutathione peroxidase-4, paraoxonase-1, glutamate cysteine ligase and nuclear factor erythroid 2-related factor-2 (Nrf2). Overall, the present data suggest that dietary GPSE-γCD exhibits anti-inflammatory, but not antioxidant activity in mouse liver in vivo. Thus, GPSE-γCD has the potential to serve as a natural hepatoprotective bioactive compound for dietary-mediated strategies against chronic inflammation.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Dieta Ocidental , Suplementos Nutricionais , Própole/química , Própole/farmacologia , gama-Ciclodextrinas/química , Ração Animal , Animais , Biomarcadores , Glicemia/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Espectrometria de Massas , Camundongos , Transcriptoma
5.
Biofactors ; 42(3): 268-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26910885

RESUMO

In the present study the relationship between the CoQ10 redox state (% oxidized form of CoQ10 ) and the serum level of c-reactive protein (CRP) was investigated in a large Caucasian study population (n = 1319). In order to evaluate independently the influence of the variables that predict the outcome of CRP, an analysis of covariance (ANCOVA) was performed with CRP as the dependent variable. Gender was taken as an independent factor and CoQ10 redox and BMI as independent covariates. Results were substantiated with findings from a human intervention study (n = 53), receiving 150 mg/day ubiquinol for 14 days. Spearman's correlation revealed a significant (P < 0.001) association between the CoQ10 redox state and CRP concentrations in the whole study population. Thus, higher CRP concentrations were found in subjects having more oxidized CoQ10 . Similar results were evident for further inflammatory markers (interleukin-6, number of leucocytes). The ANCOVA revealed a significant (P < 0.001) prediction of CRP concentrations by CoQ10 redox state, after controlling for the effect of BMI and separately for gender. In the intervention study it was further found that the oral intake of ubiquinol increased its proportion significantly (P < 0.001), with the highest increase in those persons having a low basal serum ubiquinol content (<92.3%). Here it was discovered that the ubiquinol status significantly correlated to the concentration of the inflammation marker monocyte chemotactic protein 1. It is concluded that CoQ10 redox state predicts the concentration of CRP. Persons at risk with lower ubiquinol status, higher BMI, and low grade inflammation may benefit from ubiquinol supplementation. © 2016 BioFactors, 42(3):268-276, 2016.


Assuntos
Proteína C-Reativa/metabolismo , Inflamação/dietoterapia , Ubiquinona/análogos & derivados , Adolescente , Adulto , Índice de Massa Corporal , Quimiocina CCL2/sangue , Suplementos Nutricionais , Humanos , Inflamação/sangue , Interleucina-6/biossíntese , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Oxirredução , Estatísticas não Paramétricas , Ubiquinona/administração & dosagem , Ubiquinona/sangue
6.
Biofactors ; 41(4): 211-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26228113

RESUMO

Coenzyme Q10 (CoQ10 ) exists in a reduced (ubiquinol) and an oxidized (ubiquinone) form in all human tissues and functions, amongst others, in the respiratory chain, redox-cycles, and gene expression. As the status of CoQ10 is an important risk factor for several diseases, here we determined the CoQ10 status (ubiquinol, ubiquinone) in a large Caucasian study population (n = 1,911). The study population covers a wide age range (age: 18-83 years, 43.4% men), has information available on more than 10 measured clinical phenotypes, more than 30 diseases (presence vs. absence), about 30 biomarkers, and comprehensive genetic information including whole-genome SNP typing (>891,000 SNPs). The major aim of this long-term resource in CoQ10 research is the comprehensive analysis of the CoQ10 status with respect to integrated health parameters (i.e., fat metabolism, inflammation), disease-related biomarkers (i.e., liver enzymes, marker for heart failure), common diseases (i.e., neuropathy, myocardial infarction), and genetic risk in humans. Based on disease status, biomarkers, and genetic variants, our cohort is also useful to perform Mendelian randomisation approaches. In conclusion, the present study population is a promising resource to gain deeper insight into CoQ10 status in human health and disease.


Assuntos
Insuficiência Cardíaca/sangue , Infarto do Miocárdio/sangue , Neoplasias/sangue , Doenças Neurodegenerativas/sangue , Dor/sangue , Doenças do Sistema Nervoso Periférico/sangue , Ubiquinona/análogos & derivados , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Inflamação , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Ubiquinona/sangue
7.
Biochem Biophys Res Commun ; 452(4): 920-7, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25234594

RESUMO

Coenzyme Q (CoQ, ubiquinone) is an essential component of the respiratory chain, a cofactor of pyrimidine biosynthesis and acts as an antioxidant in extra mitochondrial membranes. More recently CoQ has been identified as a modulator of apoptosis, inflammation and gene expression. CoQ deficient Caenorhabditis elegans clk-1 mutants show several phenotypes including a delayed postembryonic growth. Using wild type and two clk-1 mutants, here we established an experimental set-up to study the consequences of endogenous CoQ deficiency or exogenous CoQ supply on gene expression and growth. We found that a deficiency of endogenous CoQ synthesis down-regulates a cluster of genes that are important for growth (i.e., RNA polymerase II, eukaryotic initiation factor) and up-regulates oxidation reactions (i.e., cytochrome P450, superoxide dismutase) and protein interactions (i.e., F-Box proteins). Exogenous CoQ supply partially restores the expression of these genes as well as the growth retardation of CoQ deficient clk-1 mutants. On the other hand exogenous CoQ supply does not alter the expression of a further sub-set of genes. These genes are involved in metabolism (i.e., succinate dehydrogenase complex), cell signalling or synthesis of lectins. Thus, our work provides a comprehensive overview of genes which can be modulated in their expression by endogenous or exogenous CoQ. As growth retardation in CoQ deficiency is linked to the gene expression profile we suggest that CoQ promotes growth via gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ubiquinona/análogos & derivados , Animais , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mutação , Ubiquinona/metabolismo , Ubiquinona/farmacologia
8.
Biofactors ; 40(3): 346-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24578032

RESUMO

Coenzyme Q derivatives (CoQ) are lipid soluble antioxidants that are synthesized endogenously in almost all species and function as an obligatory cofactor of the respiratory chain. There is evidence that CoQ status is altered by age in several species. Here we determined level and redox-state of CoQ in different age groups of pigs, mice and Caenorhabditis elegans. Since these species are very different with respect to lifespan, reproduction and physiology, our approach could provide some general tendencies of CoQ status in ageing organisms. We found that CoQ level decreases with age in pigs and mice, whereas CoQ content increases in older worms. As observed in all three species, ubiquinone, the oxidized form of CoQ, increases with age. Additionally, we were able to show that supplementation of ubiquinol-10, the reduced form of human CoQ10 , slightly increases lifespan of post-reproductive worms. In conclusion, the percentage of the oxidized form of CoQ increases with age indicating higher oxidative stress or rather a decreased anti-oxidative capacity of aged animals.


Assuntos
Envelhecimento/metabolismo , Estresse Oxidativo , Ubiquinona/metabolismo , Animais , Caenorhabditis elegans , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Especificidade da Espécie , Sus scrofa
9.
Cortex ; 49(2): 463-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23040173

RESUMO

Cognitive scientists typically classify cognitive processes as either controlled or automatic. Whereas controlled processes are slow and effortful, automatic processes are fast and involuntary. Over the past decade, we have propelled a research trajectory investigating how top-down influence in the form of suggestion can allow individuals to modulate the automaticity of cognitive processes. Here we present an overarching array of converging findings that collectively indicate that certain individuals can derail involuntary processes, such as reading, by "unringing" the proverbial bell. We examine replications of these effects from both our own laboratory and independent groups, and extend our Stroop findings to several other well-established automatic paradigms, including the McGurk effect. We thus demonstrate how, in the case of highly suggestible individuals, suggestion seems to wield control over a process that is likely even more automatic than the Stroop effect. Finally, we present findings from two novel experimental paradigms exploring the potential of shifting automaticity in the opposite direction - i.e., transforming, without practice, a controlled task into one that is automatic. Drawing on related evidence from the neuroscience of contemplative practices, we discuss how these findings pave the road to a more scientific understanding of voluntary control and automaticity, and expound on their possible experimental and therapeutic applications.


Assuntos
Comportamento/fisiologia , Hipnose , Teste de Stroop , Sugestão , Ciência Cognitiva , Humanos , Prática Psicológica , Desempenho Psicomotor/fisiologia
10.
BMC Res Notes ; 5: 540, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23021568

RESUMO

BACKGROUND: Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. FINDINGS: Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif) ligand 2 gene (CXCL2) more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD) without changing the methylation pattern of the respective gene. CONCLUSION: In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.


Assuntos
Quimiocina CXCL2/metabolismo , Metilação de DNA/efeitos dos fármacos , Suplementos Nutricionais , Mediadores da Inflamação/metabolismo , Monócitos/efeitos dos fármacos , Ubiquinona/análogos & derivados , Adulto , Quimiocina CXCL2/genética , Ilhas de CpG/efeitos dos fármacos , Regulação para Baixo , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , RNA Mensageiro/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquinona/farmacologia , Adulto Jovem
11.
Ann N Y Acad Sci ; 1031: 102-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15753138

RESUMO

To obtain a comprehensive understanding of the molecular mechanisms of action of vitamin E (VE), global gene expression profiles using DNA arrays in rat liver and hepatocellular liver carcinoma cells (HepG2) were obtained. For the analysis of short-term (49 days) and long-term (290 days) VE deficiency, rats were fed semisynthetic diets either supplemented with or deficient in VE. In addition, HepG2 cells were treated with VE concentrations comparable to those that were achieved in the in vivo experiment. Differential gene expression in rat liver and that in HepG2 cells were measured by DNA arrays comprising up to 7,000 genes. Dietary VE deficiency over a 7-week period did not induce any significant changes in the expression profile among the genes evaluated. However, long-term VE deficiency upregulated coagulation factor IX (FIX), 5-alpha-steroid reductase type 1, and CD36 mRNA levels. Furthermore, VE deficiency resulted in a significant downregulation of hepatic gamma-glutamyl-cysteinyl synthetase, the rate-limiting enzyme of glutathione synthesis. According to the rat experiment, VE supplementation changed coagulation factor IX and CD36 expression in HepG2 cells; thus, in vivo data could be partly confirmed with the in vitro model. Overall, the current studies reveal that dietary VE has important long-term effects on liver gene expression with potential downstream effects on extrahepatic tissues.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , alfa-Tocoferol/farmacologia , Animais , Carcinoma Hepatocelular , Células Cultivadas , Humanos , Neoplasias Hepáticas , Masculino , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA