Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Clin Nutr ; 119(5): 1175-1186, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484976

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are proposed to play a role in the development of cardiovascular diseases (CVDs) and are considered emerging markers of CVDs. n-3 PUFAs are abundant in oily fish and fish oil and are reported to reduce CVD risk, but there has been little research to date examining the effects of n-3 PUFAs on the generation and function of EVs. OBJECTIVES: We aimed to investigate the effects of fish oil supplementation on the number, generation, and function of EVs in subjects with moderate risk of CVDs. METHODS: A total of 40 participants with moderate risk of CVDs were supplemented with capsules containing either fish oil (1.9 g/d n-3 PUFAs) or control oil (high-oleic safflower oil) for 12 wk in a randomized, double-blind, placebo-controlled crossover intervention study. The effects of fish oil supplementation on conventional CVD and thrombogenic risk markers were measured, along with the number and fatty acid composition of circulating and platelet-derived EVs (PDEVs). PDEV proteome profiles were evaluated, and their impact on coagulation was assessed using assays including fibrin clot formation, thrombin generation, fibrinolysis, and ex vivo thrombus formation. RESULTS: n-3 PUFAs decreased the numbers of circulating EVs by 27%, doubled their n-3 PUFA content, and reduced their capacity to support thrombin generation by >20% in subjects at moderate risk of CVDs. EVs derived from n-3 PUFA-enriched platelets in vitro also resulted in lower thrombin generation, but did not alter thrombus formation in a whole blood ex vivo assay. CONCLUSIONS: Dietary n-3 PUFAs alter the number, composition, and function of EVs, reducing their coagulatory activity. This study provides clear evidence that EVs support thrombin generation and that this EV-dependent thrombin generation is reduced by n-3 PUFAs, which has implications for prevention and treatment of thrombosis. CLINICAL TRIAL REGISTRY: This trial was registered at clinicaltrials.gov as NCT03203512.


Assuntos
Coagulação Sanguínea , Plaquetas , Estudos Cross-Over , Vesículas Extracelulares , Ácidos Graxos Ômega-3 , Humanos , Vesículas Extracelulares/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Método Duplo-Cego , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Suplementos Nutricionais , Doenças Cardiovasculares/prevenção & controle , Adulto , Óleos de Peixe/farmacologia , Óleos de Peixe/administração & dosagem , Idoso , Ácidos Graxos/metabolismo
2.
Cell Rep ; 28(1): 218-230.e7, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269442

RESUMO

Classical activation of macrophages (M(LPS+IFNγ)) elicits the expression of inducible nitric oxide synthase (iNOS), generating large amounts of NO and inhibiting mitochondrial respiration. Upregulation of glycolysis and a disrupted tricarboxylic acid (TCA) cycle underpin this switch to a pro-inflammatory phenotype. We show that the NOS cofactor tetrahydrobiopterin (BH4) modulates IL-1ß production and key aspects of metabolic remodeling in activated murine macrophages via NO production. Using two complementary genetic models, we reveal that NO modulates levels of the essential TCA cycle metabolites citrate and succinate, as well as the inflammatory mediator itaconate. Furthermore, NO regulates macrophage respiratory function via changes in the abundance of critical N-module subunits in Complex I. However, NO-deficient cells can still upregulate glycolysis despite changes in the abundance of glycolytic intermediates and proteins involved in glucose metabolism. Our findings reveal a fundamental role for iNOS-derived NO in regulating metabolic remodeling and cytokine production in the pro-inflammatory macrophage.


Assuntos
Ciclo do Ácido Cítrico , Inflamação/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Succinatos/metabolismo , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Glicólise/efeitos dos fármacos , Interferon gama/farmacologia , Interleucina-1beta/metabolismo , Isocitrato Desidrogenase/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Infecções por Mycobacterium/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ácido Succínico/metabolismo , Espectrometria de Massas em Tandem
3.
Proc Biol Sci ; 285(1883)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30051838

RESUMO

Archaeological dental calculus has emerged as a rich source of ancient biomolecules, including proteins. Previous analyses of proteins extracted from ancient dental calculus revealed the presence of the dietary milk protein ß-lactoglobulin, providing direct evidence of dairy consumption in the archaeological record. However, the potential for calculus to preserve other food-related proteins has not yet been systematically explored. Here we analyse shotgun metaproteomic data from 100 archaeological dental calculus samples ranging from the Iron Age to the post-medieval period (eighth century BC to nineteenth century AD) in England, as well as 14 dental calculus samples from contemporary dental patients and recently deceased individuals, to characterize the range and extent of dietary proteins preserved in dental calculus. In addition to milk proteins, we detect proteomic evidence of foodstuffs such as cereals and plant products, as well as the digestive enzyme salivary amylase. We discuss the importance of optimized protein extraction methods, data analysis approaches and authentication strategies in the identification of dietary proteins from archaeological dental calculus. This study demonstrates that proteomic approaches can robustly identify foodstuffs in the archaeological record that are typically under-represented due to their poor macroscopic preservation.


Assuntos
Cálculos Dentários/química , Dieta/história , Proteoma , Arqueologia , DNA Antigo/análise , Inglaterra , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História Antiga , História Medieval
4.
Sci Rep ; 6: 26430, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27210478

RESUMO

Proteins containing citrulline, a post-translational modification of arginine, are generated by peptidyl arginine deiminases (PAD). Citrullinated proteins have pro-inflammatory effects in both innate and adaptive immune responses. Here, we examine the therapeutic effects in collagen-induced arthritis of the second generation PAD inhibitor, BB-Cl-amidine. Treatment after disease onset resulted in the reversal of clinical and histological changes of arthritis, associated with a marked reduction in citrullinated proteins in lymph nodes. There was little overall change in antibodies to collagen or antibodies to citrullinated peptides, but a shift from pro-inflammatory Th1 and Th17-type responses to pro-resolution Th2-type responses was demonstrated by serum cytokines and antibody subtypes. In lymph node cells from the arthritic mice treated with BB-Cl-amidine, there was a decrease in total cell numbers but an increase in the proportion of Th2 cells. BB-Cl-amidine had a pro-apoptotic effect on all Th subsets in vitro with Th17 cells appearing to be the most sensitive. We suggest that these immunoregulatory effects of PAD inhibition in CIA are complex, but primarily mediated by transcriptional regulation. We suggest that targeting PADs is a promising strategy for the treatment of chronic inflammatory disease.


Assuntos
Artrite Experimental/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Ornitina/análogos & derivados , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Animais , Artrite Experimental/imunologia , Colágeno , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia
5.
Fly (Austin) ; 10(2): 91-100, 2016 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064297

RESUMO

Kidney stone disease is a major health burden with a complex and poorly understood pathophysiology. Drosophila Malpighian tubules have been shown to resemble human renal tubules in their physiological function. Herein, we have used Drosophila as a model to study the proteomic response to crystal formation induced by dietary manipulation in Malpighian tubules. Wild-type male flies were reared in parallel groups on standard medium supplemented with lithogenic agents: control, Sodium Oxalate (NaOx) and Ethylene Glycol (EG). Malpighian tubules were dissected after 2 weeks to visualize crystals with polarized light microscopy. The parallel group was dissected for protein extraction. A new method of Gel Assisted Sample Preparation (GASP) was used for protein extraction. Differentially abundant proteins (p<0.05) were identified by label-free quantitative proteomic analysis in flies fed with NaOx and EG diet compared with control. Their molecular functions were further screened for transmembrane ion transporter, calcium or zinc ion binder. Among these, 11 candidate proteins were shortlisted in NaOx diet and 16 proteins in EG diet. We concluded that GASP is a proteomic sample preparation method that can be applied to individual Drosophila Malpighian tubules. Our results may further increase the understanding of the pathophysiology of human kidney stone disease.


Assuntos
Drosophila melanogaster/metabolismo , Túbulos de Malpighi/metabolismo , Animais , Modelos Animais de Doenças , Cálculos Renais/química , Cálculos Renais/metabolismo , Masculino , Túbulos de Malpighi/química , Proteômica , Software
6.
J Biol Chem ; 286(39): 33784-94, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21808058

RESUMO

The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower K(m) value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Repetição de Anquirina , Hipóxia Celular , Células HEK293 , Humanos , Hidroxilação , Fator 1 Induzível por Hipóxia/genética , Espectrometria de Massas , Camundongos , Oxigenases de Função Mista/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA