Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8693, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622164

RESUMO

Non-pharmaceutical interventions (NPI) have great potential to improve cognitive function but limited investigation to discover NPI repurposing for Alzheimer's Disease (AD). This is the first study to develop an innovative framework to extract and represent NPI information from biomedical literature in a knowledge graph (KG), and train link prediction models to repurpose novel NPIs for AD prevention. We constructed a comprehensive KG, called ADInt, by extracting NPI information from biomedical literature. We used the previously-created SuppKG and NPI lexicon to identify NPI entities. Four KG embedding models (i.e., TransE, RotatE, DistMult and ComplEX) and two novel graph convolutional network models (i.e., R-GCN and CompGCN) were trained and compared to learn the representation of ADInt. Models were evaluated and compared on two test sets (time slice and clinical trial ground truth) and the best performing model was used to predict novel NPIs for AD. Discovery patterns were applied to generate mechanistic pathways for high scoring candidates. The ADInt has 162,212 nodes and 1,017,284 edges. R-GCN performed best in time slice (MR = 5.2054, Hits@10 = 0.8496) and clinical trial ground truth (MR = 3.4996, Hits@10 = 0.9192) test sets. After evaluation by domain experts, 10 novel dietary supplements and 10 complementary and integrative health were proposed from the score table calculated by R-GCN. Among proposed novel NPIs, we found plausible mechanistic pathways for photodynamic therapy and Choerospondias axillaris to prevent AD, and validated psychotherapy and manual therapy techniques using real-world data analysis. The proposed framework shows potential for discovering new NPIs for AD prevention and understanding their mechanistic pathways.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Aprendizagem
2.
medRxiv ; 2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37292731

RESUMO

Recently, computational drug repurposing has emerged as a promising method for identifying new pharmaceutical interventions (PI) for Alzheimer's Disease (AD). Non-pharmaceutical interventions (NPI), such as Vitamin E and Music therapy, have great potential to improve cognitive function and slow the progression of AD, but have largely been unexplored. This study predicts novel NPIs for AD through link prediction on our developed biomedical knowledge graph. We constructed a comprehensive knowledge graph containing AD concepts and various potential interventions, called ADInt, by integrating a dietary supplement domain knowledge graph, SuppKG, with semantic relations from SemMedDB database. Four knowledge graph embedding models (TransE, RotatE, DistMult and ComplEX) and two graph convolutional network models (R-GCN and CompGCN) were compared to learn the representation of ADInt. R-GCN outperformed other models by evaluating on the time slice test set and the clinical trial test set and was used to generate the score tables of the link prediction task. Discovery patterns were applied to generate mechanism pathways for high scoring triples. Our ADInt had 162,213 nodes and 1,017,319 edges. The graph convolutional network model, R-GCN, performed best in both the Time Slicing test set (MR = 7.099, MRR = 0.5007, Hits@1 = 0.4112, Hits@3 = 0.5058, Hits@10 = 0.6804) and the Clinical Trials test set (MR = 1.731, MRR = 0.8582, Hits@1 = 0.7906, Hits@3 = 0.9033, Hits@10 = 0.9848). Among high scoring triples in the link prediction results, we found the plausible mechanism pathways of (Photodynamic therapy, PREVENTS, Alzheimer's Disease) and (Choerospondias axillaris, PREVENTS, Alzheimer's Disease) by discovery patterns and discussed them further. In conclusion, we presented a novel methodology to extend an existing knowledge graph and discover NPIs (dietary supplements (DS) and complementary and integrative health (CIH)) for AD. We used discovery patterns to find mechanisms for predicted triples to solve the poor interpretability of artificial neural networks. Our method can potentially be applied to other clinical problems, such as discovering drug adverse reactions and drug-drug interactions.

3.
J Biomed Inform ; 131: 104120, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35709900

RESUMO

OBJECTIVE: Develop a novel methodology to create a comprehensive knowledge graph (SuppKG) to represent a domain with limited coverage in the Unified Medical Language System (UMLS), specifically dietary supplement (DS) information for discovering drug-supplement interactions (DSI), by leveraging biomedical natural language processing (NLP) technologies and a DS domain terminology. MATERIALS AND METHODS: We created SemRepDS (an extension of an NLP tool, SemRep), capable of extracting semantic relations from abstracts by leveraging a DS-specific terminology (iDISK) containing 28,884 DS terms not found in the UMLS. PubMed abstracts were processed using SemRepDS to generate semantic relations, which were then filtered using a PubMedBERT model to remove incorrect relations before generating SuppKG. Two discovery pathways were applied to SuppKG to identify potential DSIs, which are then compared with an existing DSI database and also evaluated by medical professionals for mechanistic plausibility. RESULTS: SemRepDS returned 158.5% more DS entities and 206.9% more DS relations than SemRep. The fine-tuned PubMedBERT model (significantly outperformed other machine learning and BERT models) obtained an F1 score of 0.8605 and removed 43.86% of semantic relations, improving the precision of the relations by 26.4% over pre-filtering. SuppKG consists of 56,635 nodes and 595,222 directed edges with 2,928 DS-specific nodes and 164,738 edges. Manual review of findings identified 182 of 250 (72.8%) proposed DS-Gene-Drug and 77 of 100 (77%) proposed DS-Gene1-Function-Gene2-Drug pathways to be mechanistically plausible. DISCUSSION: With added DS terminology to the UMLS, SemRepDS has the capability to find more DS-specific semantic relationships from PubMed than SemRep. The utility of the resulting SuppKG was demonstrated using discovery patterns to find novel DSIs. CONCLUSION: For the domain with limited coverage in the traditional terminology (e.g., UMLS), we demonstrated an approach to leverage domain terminology and improve existing NLP tools to generate a more comprehensive knowledge graph for the downstream task. Even this study focuses on DSI, the method may be adapted to other domains.


Assuntos
Processamento de Linguagem Natural , Unified Medical Language System , Suplementos Nutricionais , PubMed , Semântica
4.
J Biomed Semantics ; 9(1): 25, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587224

RESUMO

BACKGROUND: Structured electronic health records are a rich resource for identifying novel correlations, such as co-morbidities and adverse drug reactions. For drug development and better understanding of biomedical phenomena, such correlations need to be supported by viable hypotheses about the mechanisms involved, which can then form the basis of experimental investigations. METHODS: In this study, we demonstrate the use of discovery browsing, a literature-based discovery method, to generate plausible hypotheses elucidating correlations identified from structured clinical data. The method is supported by Semantic MEDLINE web application, which pinpoints interesting concepts and relevant MEDLINE citations, which are used to build a coherent hypothesis. RESULTS: Discovery browsing revealed a plausible explanation for the correlation between epilepsy and inflammatory bowel disease that was found in an earlier population study. The generated hypothesis involves interleukin-1 beta (IL-1 beta) and glutamate, and suggests that IL-1 beta influence on glutamate levels is involved in the etiology of both epilepsy and inflammatory bowel disease. CONCLUSIONS: The approach presented in this paper can supplement population-based correlation studies by enabling the scientist to identify literature that may justify the novel patterns identified in such studies and can underpin basic biomedical research that can lead to improved treatments and better healthcare outcomes.


Assuntos
Mineração de Dados , Epilepsia/metabolismo , Ácido Glutâmico/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-1beta/metabolismo , Encéfalo/metabolismo , Humanos , MEDLINE , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA