Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 20(12): 6197-6212, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37955627

RESUMO

Compound X is a weak basic drug targeting the early stages of Parkinson's disease, for which a theoretical risk assessment has indicated that elevated gastric pH conditions could potentially result in reduced plasma concentrations. Different in vitro dissolution methodologies varying in level of complexity and a physiologically based pharmacokinetic (PBPK) absorption model demonstrated that the dissolution, solubility, and intestinal absorption of compound X was indeed reduced under elevated gastric pH conditions. These observations were confirmed in a crossover pharmacokinetic study in Beagle dogs. As a result, the development of a formulation resulting in robust performance that is not sensitive to the exposed gastric pH levels is of crucial importance. The dynamic intestinal absorption MODel (Diamod), an advanced in vitro gastrointestinal transfer tool that allows to study the gastrointestinal dissolution and interconnected permeation of drugs, was selected as an in vitro tool for the formulation optimization activities given its promising predictive capacity and its capability to generate insights into the mechanisms driving formulation performance. Different pH-modifiers were screened for their potential to mitigate the pH-effect by decreasing the microenvironmental pH at the dissolution surface. Finally, an optimized formulation containing a clinically relevant dose of the drug and a functional amount of the selected pH-modifier was evaluated for its performance in the Diamod. This monolayer tablet formulation resulted in rapid gastric dissolution and supersaturation, inducing adequate intestinal supersaturation and permeation of compound X, irrespective of the gastric acidity level in the stomach. In conclusion, this study describes the holistic biopharmaceutics approach driving the development of a patient-centric formulation of compound X.


Assuntos
Absorção Intestinal , Assistência Centrada no Paciente , Humanos , Animais , Cães , Composição de Medicamentos , Administração Oral , Absorção Intestinal/fisiologia , Solubilidade
2.
Clin Pharmacol Drug Dev ; 8(5): 647-656, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30748125

RESUMO

Two clinical studies were performed in healthy volunteers to investigate food and antacid effects on lesinurad, a novel selective uric acid reabsorption inhibitor approved for treatment of hyperuricemia associated with gout in combination with xanthine oxidase inhibitors. Study 1 evaluated a high-fat, high-calorie meal or high doses of antacids (3000 mg calcium carbonate or 1600 mg magnesium hydroxide/1600 mg aluminum hydroxide) on the pharmacokinetics (PK) and pharmacodynamics (PD) of 400 mg oral lesinurad. Study 2 evaluated low doses of antacids (1250 mg calcium carbonate or 800 mg magnesium hydroxide/800 mg aluminum hydroxide) on the PK and PD of 400 mg lesinurad. Food did not alter the plasma AUC of lesinurad and only reduced its Cmax by 18%. In the fasted conditions, high-dose calcium carbonate reduced the Cmax and AUC of lesinurad by 54% and 38%, respectively, whereas high-dose magnesium hydroxide/aluminum hydroxide reduced Cmax and AUC by 36% and 31%, respectively. Food enhanced the maximum serum urate (sUA)-lowering effect of lesinurad by approximately 20% despite reducing the Cmax of lesinurad. High-dose calcium carbonate decreased the urate-lowering effect approximately 20% in the first 6 hours, whereas high-dose magnesium hydroxide/aluminum hydroxide reduced the effect by 26%. Low-dose calcium carbonate or magnesium hydroxide/aluminum hydroxide in the presence of food did not significantly affect plasma lesinurad Cmax and AUC or the sUA lowering and renal handling of uric acid. In summary, study results suggest food did not meaningfully alter lesinurad PK and PD. High doses of antacids reduced lesinurad AUC up to 40% and reduced the lesinurad uric acid-lowering effect.


Assuntos
Hidróxido de Alumínio/farmacologia , Antiácidos/farmacologia , Carbonato de Cálcio/farmacologia , Interações Alimento-Droga , Supressores da Gota , Hidróxido de Magnésio/farmacologia , Tioglicolatos , Triazóis , Ácido Úrico/sangue , Adolescente , Adulto , Estudos Cross-Over , Gorduras na Dieta/administração & dosagem , Combinação de Medicamentos , Supressores da Gota/sangue , Supressores da Gota/farmacocinética , Supressores da Gota/farmacologia , Supressores da Gota/urina , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Tioglicolatos/sangue , Tioglicolatos/farmacocinética , Tioglicolatos/farmacologia , Tioglicolatos/urina , Triazóis/sangue , Triazóis/farmacocinética , Triazóis/farmacologia , Triazóis/urina , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA