Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Acta Physiol (Oxf) ; 240(3): e14101, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38243723

RESUMO

AIM: Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet ß-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into ß-cells and its acute and chronic intracellular interactions. METHODS: The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 ß-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals. RESULTS: Taurine transporter TauT was expressed in the islet ß-cells, with the transport of taurine and homologs having a weak sulfonate specificity but significant sensitivity to the molecular weight of the transporter. Taurine, hypotaurine, homotaurine, and ß-alanine enhanced insulin secretion in a glucose-dependent manner, an action potentiated by cytosolic Ca2+ and cAMP. Acute and chronic ß-cell insulinotropic effects of taurine were highly sensitive to co-agonism with GLP-1, forskolin, tolbutamide, and membrane depolarization, with an unanticipated indifference to the activation of PKC and CCK8 receptors. Pre-culturing with GLP-1 or KATP channel inhibitors sensitized or, respectively, desensitized ß-cells to the acute taurine stimulus. CONCLUSION: Together, these data demonstrate the pathways whereby taurine exhibits a range of beneficial effects on insulin secretion and ß-cell function, consistent with the antidiabetic potential of its dietary low-dose supplementation.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Animais , Camundongos , Taurina/farmacologia , Transdução de Sinais , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes
2.
Life Sci ; 316: 121402, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669678

RESUMO

AIMS: Despite its high concentration in pancreatic islets of Langerhans and broad range of antihyperglycemic effects, the route facilitating the import of dietary taurine into pancreatic ß-cell and mechanisms underlying its insulinotropic activity are unclear. We therefore studied the impact of taurine on beta-cell function, alongside that of other small neutral amino acids, L-alanine and L-proline. MAIN METHODS: Pharmacological profiling of insulin secretion was conducted using clonal BRIN BD11 ß-cells, the impact of taurine on the metabolic fate of glucose carbons was assessed using NMR and the findings were verified by real-time imaging of Ca2+ dynamics in the cytosol of primary mouse and human islet beta-cells. KEY FINDINGS: In our hands, taurine, alanine and proline induced secretory responses that were dependent on the plasma membrane depolarisation, import of Ca2+, homeostasis of K+ and Na+ as well as on cell glycolytic and oxidative metabolism. Taurine shifted the balance between the oxidation and anaplerosis towards the latter, in BRIN BD11 beta-cells. Furthermore, the amino acid signalling was significantly attenuated by inhibition of Na+-K+-Cl- symporter (NKCC). SIGNIFICANCE: These data suggest that taurine, like L-alanine and L-proline, acutely induces glucose-dependent insulin-secretory responses by modulating electrogenic Na+ transport, with potential role of intracellular K+ and Cl- in the signal transduction. The acute action delineated would be consistent with antidiabetic potential of dietary taurine supplementation.


Assuntos
Aminoácidos Neutros , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Insulina/metabolismo , Taurina/farmacologia , Taurina/metabolismo , Aminoácidos Neutros/metabolismo , Aminoácidos Neutros/farmacologia , Linhagem Celular , Ilhotas Pancreáticas/metabolismo , Alanina/farmacologia , Alanina/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Prolina/metabolismo
3.
Biofactors ; 49(3): 646-662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714992

RESUMO

The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and ß-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in ß-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic ß-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into ß-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet ß-cell biology, which combines the augmentation of α-/ß-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Taurina/farmacologia , Transdiferenciação Celular , Glicemia/metabolismo , Ilhotas Pancreáticas/metabolismo , Hipoglicemiantes/farmacologia , Estreptozocina , Insulina/metabolismo
4.
Plants (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208010

RESUMO

Acacia arabica is used traditionally to treat a variety of ailments, including diabetes. This study elucidated the antidiabetic actions of A. arabica bark together with the isolation of bioactive molecules. Insulin secretion and signal transduction were measured using clonal ß cells and mouse islets. Glucose uptake was assessed using 3T3-L1 adipocytes, and in vitro systems assessed additional glucose-lowering actions. High-fat-fed (HFF) obese rats were used for in vivo evaluation, and phytoconstituents were isolated and characterised by RP-HPLC followed by LC-MS and NMR. Hot-water extract of A. arabica (HWAA) increased insulin release from clonal ß cells and mouse islets by 1.3-6.8-fold and 1.6-3.2-fold, respectively. Diazoxide, verapamil and calcium-free conditions decreased insulin-secretory activity by 30-42%. In contrast, isobutylmethylxanthine (IBMX), tolbutamide and 30 mM KCl potentiated the insulin-secretory effects. The mechanism of actions of HWAA involved membrane depolarisation and elevation of intracellular Ca2+ together with an increase in glucose uptake by 3T3-L1 adipocytes, inhibition of starch digestion, glucose diffusion, dipeptidyl peptidase-IV (DPP-IV) enzyme activity and protein glycation. Acute HWAA administration (250 mg/5 mL/kg) enhanced glucose tolerance and plasma insulin in HFF obese rats. Administration of HWAA (250 mg/5 mL/kg) for 9 days improved glucose homeostasis and ß-cell functions, thereby improving glycaemic control, and circulating insulin. Isolated phytoconstituents, including quercetin and kaempferol, increased insulin secretion in vitro and improved glucose tolerance. The results indicate that HWAA has the potential to treat type 2 diabetes as a dietary supplement or as a source of antidiabetic agents, including quercetin and kaempferol.

5.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33416077

RESUMO

The present study investigated the effects of hot water extracts of 22 medicinal plants used traditionally to treat diabetes on Dipeptidyl peptidase-IV (DPP-IV) activity both in vitro and in vivo in high-fat fed (HFF) obese-diabetic rats. Fluorometric assay was employed to determine the DPP-IV activity. For in vivo studies, HFF obese-diabetic rats were fasted for 6 h and blood was sampled at different times before and after the oral administration of the glucose alone (18 mmol/kg body weight) or with either of the four most active plant extracts (250 mg/5 ml/kg, body weight) or established DPP-IV inhibitors (10 µmol/5 ml/kg). DPP-IV inhibitors: sitagliptin, vildagliptin and diprotin A, decreased enzyme activity by a maximum of 95-99% (P<0.001). Among the 22 natural anti-diabetic plants tested, AnogeissusLatifolia exhibited the most significant (P<0.001) inhibitory activity (96 ± 1%) with IC50 and IC25 values of 754 and 590 µg/ml. Maximum inhibitory effects of other extracts: Aegle marmelos, Mangifera indica, Chloropsis cochinchinensis, Trigonella foenum-graecum and Azadirachta indica were (44 ±7%; 38 ± 4%; 31±1%; 28±2%; 27±2%, respectively). A maximum of 45% inhibition was observed with >25 µM concentrations of selected phytochemicals (rutin). A.latifolia, A. marmelos, T. foenum-graecum and M. indica extracts improved glucose tolerance, insulin release, reduced DPP-IV activity and increased circulating active GLP-1 in HFF obese-diabetic rats (P<0.05-0.001). These results suggest that ingestion of selected natural anti-diabetic plants, in particular A. latifolia, A. marmelos, T. foenum-graecum and M. indica can substantially inhibit DPP-IV and improve glucose homeostasis, thereby providing a useful therapeutic approach for the treatment of T2DM.


Assuntos
Dieta Hiperlipídica , Dipeptidil Peptidase 4/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Glicemia/metabolismo , Insulina/sangue , Masculino , Ratos , Ratos Sprague-Dawley
6.
Br J Nutr ; 126(8): 1149-1163, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33331251

RESUMO

Anti-diabetic actions of Camellia sinensis leaves, used traditionally for type 2 diabetes (T2DM) treatment, have been determined. Insulin release, membrane potential and intra-cellular Ca were studied using the pancreatic ß-cell line, BRIN-BD11 and primary mouse pancreatic islets. Cellular glucose-uptake/insulin action by 3T3-L1 adipocytes, starch digestion, glucose diffusion, dipeptidyl peptidase-4 (DPP-IV) activity and glycation were determined together with in vivo studies assessing glucose homoeostasis in high-fat-fed (HFF) rats. Active phytoconstituents with insulinotropic activity were isolated using reversed-phase HPLC, LCMS and NMR. A hot water extract of C. sinensis increased insulin secretion in a concentration-dependent manner. Insulinotropic effects were significantly reduced by diazoxide, verapamil and under Ca-free conditions, being associated with membrane depolarisation and increased intra-cellular Ca2+. Insulin-releasing effects were observed in the presence of KCl, tolbutamide and isobutylmethylxanthine, indicating actions beyond K+ and Ca2+ channels. The extract also increased glucose uptake/insulin action in 3T3L1 adipocyte cells and inhibited protein glycation, DPP-IV enzyme activity, starch digestion and glucose diffusion. Oral administration of the extract enhanced glucose tolerance and insulin release in HFF rats. Extended treatment (250 mg/5 ml per kg orally) for 9 d led to improvements of body weight, energy intake, plasma and pancreatic insulin, and corrections of both islet size and ß-cell mass. These effects were accompanied by lower glycaemia and significant reduction of plasma DPP-IV activity. Compounds isolated by HPLC/LCMS, isoquercitrin and rutin (464·2 Da and 610·3 Da), stimulated insulin release and improved glucose tolerance. These data indicate that C. sinensis leaves warrant further evaluation as an effective adjunctive therapy for T2DM and source of bioactive compounds.


Assuntos
Camellia sinensis , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Ilhotas Pancreáticas , Extratos Vegetais/farmacologia , Células 3T3-L1 , Animais , Glicemia/metabolismo , Cálcio/metabolismo , Camellia sinensis/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Dipeptidil Peptidase 4/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Secreção de Insulina , Camundongos , Folhas de Planta/química , Ratos , Amido/metabolismo
7.
J Bone Miner Res ; 35(7): 1363-1374, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32155286

RESUMO

The involvement of a gut-bone axis in controlling bone physiology has been long suspected, although the exact mechanisms are unclear. We explored whether glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine K cells were involved in this process. The bone phenotype of transgenic mouse models lacking GIP secretion (GIP-GFP-KI) or enteroendocrine K cells (GIP-DT) was investigated. Mice deficient in GIP secretion exhibited lower bone strength, trabecular bone mass, trabecular number, and cortical thickness, notably due to higher bone resorption. Alterations of microstructure, modifications of bone compositional parameters, represented by lower collagen cross-linking, were also apparent. None of these alterations were observed in GIP-DT mice lacking enteroendocrine K cells, suggesting that another K-cell secretory product acts to counteract GIP action. To assess this, stable analogues of the known K-cell peptide hormones, xenin and GIP, were administered to mature NIH Swiss male mice. Both were capable of modulating bone strength mostly by altering bone microstructure, bone gene expression, and bone compositional parameters. However, the two molecules exhibited opposite actions on bone physiology, with evidence that xenin effects are mediated indirectly, possibly via neural networks. Our data highlight a previously unknown interaction between GIP and xenin, which both moderate gut-bone connectivity. © 2020 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos , Polipeptídeo Inibidor Gástrico , Animais , Osso e Ossos/fisiologia , Masculino , Camundongos , Camundongos Transgênicos
8.
J Ethnopharmacol ; 253: 112647, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32035878

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hibiscus rosa-sinensis (HRS) is a tropical flowery plant, widely distributed in Asian region and an important traditional medicine used in many diseases including cough, diarrhoea and diabetes. AIM OF THIS STUDY: Hibiscus rosa-sinensis (HRS) leaves have been reported to possess anti-hyperglycaemic activity, but little is known concerning the underlying mechanism. This study investigated effects of ethanol extract of HRS on insulin release and glucose homeostasis in a type 2 diabetic rat model. MATERIALS & METHODS: Effects of ethanol extract of grinded H. rosa-sinensis (HRS) leaves on insulin release, membrane potential and intracellular calcium were determined using rat clonal ß-cells (BRIN-BD11 cells) and isolated mouse pancreatic islets. Effects on DPP-IV enzyme activity were investigated in vitro. Acute effects of HRS on glucose tolerance, gut perfusion in situ, sucrose content, intestinal disaccharidase activity and gut motility were measured. Streptozotocin induced type 2 diabetic rats treated for 28 days with ethanol extract of HRS leaf (250 and 500 mg/kg) were used to assess glucose homeostasis. RESULTS: HRS, significantly increased insulin release from clonal rat BRIN-BD11 cells and this action was confirmed using isolated mouse pancreas islets with stimulatory effects equivalent to GLP-1. HRS induced membrane depolarization and increased intracellular Ca2+ in BRIN BD11 cells and significantly inhibited DPP-IV enzyme activity in vitro. HRS administration in vivo improved glucose tolerance in type 2 diabetic rats, inhibited both glucose absorption during gut perfusion and postprandial hyperglycaemia and it reversibly increased unabsorbed sucrose passage through the gut following sucrose ingestion. HRS decreased intestinal disaccharidase activity and increased gastrointestinal motility in non-diabetic rats. In a chronic 28-day study with type 2 diabetic rats, HRS, at 250 or 500 mg/kg, significantly decreased serum glucose, cholesterol, triglycerides and increased circulating insulin, HDL cholesterol and hepatic glycogen without increasing body weight. CONCLUSION: These data suggest the antihyperglycaemic activity of HRS is mediated by inhibiting carbohydrate digestion and absorption, while significantly enhancing insulin secretion in a dose dependent manner. This suggests that HRS has potential as a novel antidiabetic therapy or a dietary supplement for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hibiscus , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta , Ratos Long-Evans
9.
Eur J Pharmacol ; 834: 126-135, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30025814

RESUMO

Enteroendocrine derived hormones such as glucagon-like-peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), gastrin and xenin are known to exert complementary beneficial metabolic effects in diabetes. This study has assessed the biological activity and therapeutic utility of a novel GLP-1/gastrin/xenin hybrid peptide, namely exendin-4/gastrin/xenin-8-Gln hybrid, both alone and in combination with the stable GIP mimetic, (DAla2)GIP. Exendin-4/gastrin/xenin-8-Gln increased in vitro insulin secretion to a similar or superior extent, as the parent peptides. Insulinotropic effects were mainly linked to modulation of GLP-1 and neurotensin receptors. Exendin-4/gastrin/xenin-8-Gln also augmented the insulinotropic actions of (DAla2)GIP. Acute administration of exendin-4/gastrin/xenin-8-Gln in mice induced significant appetite suppressive, glucose lowering and insulin secretory effects, with a duration of biological action beyond 8 h. Twice daily administration of exendin-4, exendin-4/gastrin/xenin-8-Gln, either alone or in combination with (DAla2)GIP, reduced circulating glucose, increased plasma insulin as well as improving glucose tolerance, insulin sensitivity and metabolic response to GIP in high fat fed mice. Body weight, food intake, circulating glucagon and amylase activity were unaltered. All hybrid peptide treated high fat mice exhibited marked reductions in LDL-cholesterol and body fat mass. Energy expenditure and locomotor activity were increased in mice treated with exendin-4/gastrin/xenin-8-Gln in combination with (DAla2)GIP. Interestingly, exendin-4 and exendin-4/gastrin/xenin-8-Gln treatment, but not exendin-4/gastrin/xenin-8-Gln in combination with (DAla2)GIP, reduced pancreatic islet and beta-cell area when compared to high fat controls. These studies confirm that unimolecular multi-agonist peptide hormones exert beneficial metabolic effects in diabetes, highlighting their potential as novel treatment strategies.


Assuntos
Exenatida/química , Gastrinas/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fragmentos de Peptídeos/química , Amilases/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Jejum/sangue , Glucagon/sangue , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Resistência à Insulina , Lipídeos/sangue , Masculino , Camundongos , Pancrelipase/efeitos dos fármacos , Pancrelipase/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Peptides ; 100: 269-274, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29412828

RESUMO

The vast majority of research to date on the gut hormone Peptide YY (PYY) has focused on appetite suppression and body weight regulation effects. These biological actions are believed to occur through interaction of PYY with hypothalamic Y2 receptors. However, more recent studies have added additional knowledge to understanding of the physiological, and potential therapeutic, roles of PYY beyond obesity alone. Thus, PYY has now been shown to impart improvements in pancreatic beta-cell survival and function, with obvious benefits for diabetes. This effect has been linked mainly to binding and activation of Y1 receptors by PYY, but more evidence is still required in this regard. Given the potential therapeutic promise of PYY-derived compounds, and complexity of receptor interactions, it is important to fully understand the complete biological action profile of PYY. Therefore, the current review aims to compile, evaluate and summarise current knowledge on PYY, with particular emphasis on obesity and diabetes treatment, and the importance of specific Y receptor interactions for this.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Obesidade/tratamento farmacológico , Peptídeo YY/uso terapêutico , Receptores de Neuropeptídeo Y/genética , Regulação do Apetite/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Hipotálamo/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fragmentos de Peptídeos/uso terapêutico , Peptídeo YY/metabolismo , Receptores de Neuropeptídeo Y/metabolismo
11.
Mol Cell Endocrinol ; 460: 200-208, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754350

RESUMO

OBJECTIVE: Significant attempts are being made to generate multifunctional, hybrid or peptide combinations as novel therapeutic strategies for type 2 diabetes, however this presents key challenges including design and pharmaceutical development. In this study, we evaluated metabolic properties of oral nutritional supplement epigallocatechin gallate (EGCG) in combination with GLP-1 agonist exendin-4 in a mouse model of dietary-induced diabetes and obesity. METHODS: EGCG, exendin-4 or combination of both were administered twice-daily over 28 days to high fat (HF) mice on background of low-dose streptozotocin. Energy intake, body weight, fat mass, glucose tolerance, insulin sensitivity, lipid profile, biochemical and hormone markers, and islet histology were examined. RESULTS: All treatment groups exhibited significantly reduced body weight, fat mass, circulating glucose and insulin concentrations, and HbA1c levels which were independent of changes in energy intake. Similarly, there was marked improvement in glycaemic control, glucose-stimulated insulin release, insulin sensitivity, total cholesterol and triglycerides, with most prominent effects observed following combination therapy. Circulating corticosterone concentrations and 11beta-hydroxysteroid dehydrogenase type1 (11ß-HSD1) staining (in pancreas) were beneficially decreased without changes in circulating interleukin 6 (IL-6), alanine transaminase (ALT) and glutathione reductase. Combination therapy resulted in increased islet area and number, beta cell area, and pancreatic insulin content. Generally, metabolic effects were much more pronounced in mice which received combination therapy. CONCLUSIONS: EGCG alone and particularly in combination with exendin-4 exerts positive metabolic properties in HF mice. EGCG may be useful dietary adjunct alongside GLP-1 mimetics in treatment of diabetes and related disorders.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Exenatida/uso terapêutico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Adiposidade/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Catequina/administração & dosagem , Catequina/farmacologia , Catequina/uso terapêutico , Corticosterona/sangue , Diabetes Mellitus Experimental/sangue , Dieta Hiperlipídica , Quimioterapia Combinada , Ingestão de Energia/efeitos dos fármacos , Exenatida/administração & dosagem , Exenatida/farmacologia , Teste de Tolerância a Glucose , Glutationa Redutase/metabolismo , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Resistência à Insulina , Interleucina-6/sangue , Camundongos Obesos
12.
ChemMedChem ; 10(8): 1424-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26059252

RESUMO

The present study details the development of a family of novel D-Ala(8) glucagon-like peptide-1 (GLP-1) peptide conjugates by site specific conjugation to an antithrombin III (ATIII) binding carrier pentasaccharide through tetraethylene glycol linkers. All conjugates were found to possess potent insulin-releasing activity. Peptides with short linkers (<25 atoms) conjugated at Lys(34) and Lys(37) displayed strong GLP-1 receptor (GLP-1-R) binding affinity. All D-Ala(8) GLP-1 conjugates exhibited prominent glucose-lowering action. Biological activity of the Lys(37) short-linker peptide was evident up to 72 h post-injection. In agreement, the pharmacokinetic profile of this conjugate (t1/2 , 11 h) was superior to that of the GLP-1-R agonist, exenatide. Once-daily injection of the Lys(37) short-linker peptide in ob/ob mice for 21 days significantly decreased food intake and improved HbA1c and glucose tolerance. Islet size was decreased, with no discernible change in islet number. The beneficial effects of the Lys(37) short-linker peptide were similar to or better than either exenatide or liraglutide, another GLP-1-R agonist. In conclusion, GLP-1 peptides conjugated to an ATIII binding carrier pentasaccharide have a substantially prolonged bioactive profile compatible for possible once-weekly treatment of type 2 diabetes in humans.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/química , Hipoglicemiantes/síntese química , Oligossacarídeos/química , Animais , Antitrombina III/química , Antitrombina III/metabolismo , Área Sob a Curva , Glicemia/análise , Avaliação Pré-Clínica de Medicamentos , Exenatida , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Meia-Vida , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Oligossacarídeos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Curva ROC , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Peçonhas/química , Peçonhas/metabolismo
13.
J Endocrinol ; 221(2): 193-200, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24520141

RESUMO

Xenin-25, a peptide co-secreted with the incretin hormone glucose-dependent insulinotropic polypeptide (GIP), possesses promising therapeutic actions for obesity-diabetes. However, native xenin-25 is rapidly degraded by serum enzymes to yield the truncated metabolites: xenin 9-25, xenin 11-25, xenin 14-25 and xenin 18-25. This study has examined the biological activities of these fragment peptides. In vitro studies using BRIN-BD11 cells demonstrated that native xenin-25 and xenin 18-25 possessed significant (P<0.05 to P<0.001) insulin-releasing actions at 5.6 and 16.7 mM glucose, respectively, but not at 1.1  mM glucose. In addition, xenin 18-25 significantly (P<0.05) potentiated the insulin-releasing action of the stable GIP mimetic (D-Ala²)GIP. In contrast, xenin 9-25, xenin 11-25 and xenin 14-25 displayed neither insulinotropic nor GIP-potentiating actions. Moreover, xenin 9-25, xenin 11-25 and xenin 14-25 significantly (P<0.05 to P<0.001) inhibited xenin-25 (10⁻6 M)-induced insulin release in vitro. I.p. administration of xenin-based peptides in combination with glucose to high fat-fed mice did not significantly affect the glycaemic excursion or glucose-induced insulin release compared with controls. However, when combined with (D-Ala²)GIP, all xenin peptides significantly (P<0.01 to P<0.001) reduced the overall glycaemic excursion, albeit to a similar extent as (D-Ala²)GIP alone. Xenin-25 and xenin 18-25 also imparted a potential synergistic effect on (D-Ala²)GIP-induced insulin release in high fat-fed mice. All xenin-based peptides lacked significant satiety effects in normal mice. These data demonstrate that the C-terminally derived fragment peptide of xenin-25, xenin 18-25, exhibits significant biological actions that could have therapeutic utility for obesity-diabetes.


Assuntos
Neurotensina/metabolismo , Neurotensina/farmacologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Células Cultivadas , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Neurotensina/química , Proteólise , Saciação/efeitos dos fármacos
14.
World J Gastroenterol ; 18(46): 6809-18, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23239919

RESUMO

AIM: To explore the bioactivity of an ethanolic extract of Schizandra arisanensis (SA-Et) and isolated constituents against interleukin-1ß and interferon-γ-mediated ß cell death and abolition of insulin secretion. METHODS: By employing BRIN-BD11 cells, the effects of SA-Et administration on cytokine-mediated cell death and abolition of insulin secretion were evaluated by a viability assay, cell cycle analysis, and insulin assay. The associated gene and protein expressions were also measured. In addition, the bioactivities of several peak compounds collected from the SA-Et were tested against cytokine-mediated ß cell death. RESULTS: Our results revealed that SA-Et dose-dependently ameliorated cytokine-mediated ß cell death and apoptosis. Instead of suppressing inducible nitric oxide synthase/nitric oxide cascade or p38MAPK activity, suppression of stress-activated protein kinase/c-Jun NH2-terminal kinase activity appeared to be the target for SA-Et against the cytokine mix. In addition, SA-Et provided some insulinotropic effects which re-activated the abolished insulin exocytosis in cytokine-treated BRIN-BD11 cells. Finally, schiarisanrin A and B isolated from the SA-Et showed a dose-dependent protective effect against cytokine-mediated ß cell death. CONCLUSION: This is the first report on SA-Et ameliorating cytokine-mediated ß cell death and dysfunction via anti-apoptotic and insulinotropic actions.


Assuntos
Morte Celular , Citocinas/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Schisandra/química , Animais , Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
J Endocrinol ; 214(3): 301-11, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761278

RESUMO

Interleukin-6 (IL6) has recently been reported to promote insulin secretion in a glucagon-like peptide-1-dependent manner. Herein, the direct effects of IL6 (at various concentrations from 0 to 1000 pg/ml) on pancreatic ß-cell metabolism, AMP-activated protein kinase (AMPK) signaling, insulin secretion, nitrite release, and redox status in a rat clonal ß-cell line and mouse islets are reported. Chronic insulin secretion (in µg/mg protein per 24  h) was increased from 128·7±7·3 (no IL6) to 178·4±7·7 (at 100  pg/ml IL6) in clonal ß-cells and increased significantly in islets incubated in the presence of 5·5  mM glucose for 2  h, from 0·148 to 0·167±0·003  ng/islet. Pretreatment with IL6 also induced a twofold increase in basal and nutrient-stimulated insulin secretion in subsequent 20 min static incubations. IL6 enhanced both glutathione (GSH) and glutathione disulphide (GSSG) by nearly 20% without changing intracellular redox status (GSSG/GSH). IL6 dramatically increased iNOS expression (by ca. 100-fold) with an accompanying tenfold rise in nitrite release in clonal ß-cells. Phosphorylated AMPK levels were elevated approximately twofold in clonal ß-cells and mouse islet cells. Calmodulin-dependent protein kinase kinase levels (CaMKK), an upstream kinase activator of AMPK, were also increased by 50% after IL6 exposure (in ß-cells and islets). Our data have demonstrated that IL6 can stimulate ß-cell-dependent insulin secretion via direct cell-based mechanisms. AMPK, CaMKK (an upstream kinase activator of AMPK), and the synthesis of nitric oxide appear to alter cell metabolism to benefit insulin secretion. In summary, IL6 exerts positive effects on ß-cell signaling, metabolism, antioxidant status, and insulin secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Interleucina-6/metabolismo , Ilhotas Pancreáticas/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Ácido Glucárico/metabolismo , Ácido Glucárico/farmacologia , Glutationa/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Interleucina-6/farmacologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Fenóis/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Extratos Vegetais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Ureia/metabolismo
16.
Br J Nutr ; 107(9): 1316-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21899804

RESUMO

Asparagus racemosus roots have been shown to enhance insulin secretion in perfused pancreas and isolated islets. The present study investigated the effects of ethanol extracts of A. racemosus roots on glucose homeostasis in diabetic rats, together with the effects on insulin action in 3T3 adipocytes. When administered orally together with glucose, A. racemosus extract improved glucose tolerance in normal as well as in two types of diabetic rats. To investigate the possible effects on carbohydrate absorption, the sucrose content of the gastrointestinal tract was examined in 12 h fasted rats after an oral sucrose load (2.5 g/kg body weight). The extract significantly suppressed postprandial hyperglycaemia after sucrose ingestion and reversibly increased unabsorbed sucrose content throughout the gut. The extract also significantly inhibited the absorption of glucose during in situ gut perfusion with glucose. Furthermore, the extract enhanced glucose transport and insulin action in 3T3-L1 adipocytes. Daily administration of A. racemosus to type 2 diabetic rats for 28 d decreased serum glucose, increased pancreatic insulin, plasma insulin, liver glycogen and total oxidant status. These findings indicate that antihyperglycaemic activity of A. racemosus is partly mediated by inhibition of carbohydrate digestion and absorption, together with enhancement of insulin secretion and action in the peripheral tissue. Asparagus racemosus may be useful as a source of novel antidiabetic compounds or a dietary adjunct for the management of diabetes.


Assuntos
Asparagus/química , Metabolismo dos Carboidratos , Hipoglicemiantes/química , Insulina/metabolismo , Extratos Vegetais/química , Raízes de Plantas/química , Células 3T3 , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Homeostase , Células Secretoras de Insulina/efeitos dos fármacos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Perfusão , Ratos , Ratos Long-Evans , Fatores de Tempo
17.
J Endocrinol ; 207(1): 87-93, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20631047

RESUMO

Recently, glucagon-like peptide 1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP) have received much attention regarding possible roles in aetiology and treatment of type 2 diabetes. However, peptides co-secreted from the same enteroendocrine cells are less well studied. The present investigation was designed to characterise the in vitro and in vivo effects of xenin, a peptide co-secreted with GIP from intestinal K-cells. We examined the enzymatic stability, insulin-releasing activity and associated cAMP production capability of xenin in vitro. In addition, the effects of xenin on satiety, glucose homoeostasis and insulin secretion were examined in vivo. Xenin was time dependently degraded (t(1/2)=162±6 min) in plasma in vitro. In clonal BRIN-BD11 cells, xenin stimulated insulin secretion at 5.6 mM (P<0.05) and 16.7 mM (P<0.05 to P<0.001) glucose levels compared to respective controls. Xenin also exerted an additive effect on GIP, GLP1 and neurotensin-mediated insulin secretion. In clonal ß-cells, xenin did not stimulate cellular cAMP production, alter membrane potential or elevate intra-cellular Ca(2)(+). In normal mice, xenin exhibited a short-acting (P<0.01) satiety effect at high dosage (500 nmol/kg). In overnight fasted mice, acute injection of xenin enhanced glucose-lowering and elevated insulin secretion when injected concomitantly or 30 min before glucose. These effects were not observed when xenin was administered 60 min before the glucose challenge, reflecting the short half-life of the native peptide in vivo. Overall, these data demonstrate that xenin may have significant metabolic effects on glucose control, which merit further study.


Assuntos
Glicemia/metabolismo , Hormônios Gastrointestinais/farmacologia , Hormônios Gastrointestinais/fisiologia , Insulina/metabolismo , Neurotensina/farmacologia , Neurotensina/fisiologia , Resposta de Saciedade/efeitos dos fármacos , Resposta de Saciedade/fisiologia , Animais , Linhagem Celular , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Hormônios Gastrointestinais/administração & dosagem , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Neurotensina/administração & dosagem , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos
18.
Br J Nutr ; 103(2): 212-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19723351

RESUMO

Traditional plant treatments have been used throughout the world for the therapy of diabetes mellitus. The aim of the present study was to investigate the efficacy and mode of action of Terminalia bellirica used traditionally for the treatment of diabetes in India. T. bellirica aqueous extract stimulated basal insulin output and potentiated glucose-stimulated insulin secretion concentration-dependently in the clonal pancreatic beta-cell line, BRIN-BD11 (P < 0.001). The insulin-secretory activity of the plant extract was abolished in the absence of extracellular Ca2+ and by inhibitors of cellular Ca2+ uptake, diazoxide and verapamil (P < 0.001; n 8). Furthermore, the extract did not increase insulin secretion in depolarised cells and did not further augment insulin secretion triggered by tolbutamide or glibenclamide. T. bellirica extract also displayed insulin-mimetic activity and enhanced insulin-stimulated glucose uptake in 3T3-L1 adipocytes by 300 %. At higher concentrations, the extract also produced a 10-50 % (P < 0.001) decrease in starch digestion in vitro and inhibited protein glycation (P < 0.001). The present study has revealed that components in T. bellirica extract stimulate insulin secretion, enhance insulin action and inhibit both protein glycation and starch digestion. The former actions are dependent on the active principle(s) in the plant being absorbed intact. Future work assessing the use of T. bellirica as a dietary adjunct or as a source of active anti-diabetic agents may provide new opportunities for the treatment of diabetes.


Assuntos
Insulina/metabolismo , Insulina/fisiologia , Extratos Vegetais/farmacologia , Amido/metabolismo , Terminalia , Animais , Cálcio/metabolismo , Linhagem Celular , Diazóxido/farmacologia , Digestão/efeitos dos fármacos , Digestão/fisiologia , Frutas , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Extratos Vegetais/uso terapêutico , Ratos , Verapamil/farmacologia
19.
Peptides ; 29(6): 1036-41, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18291559

RESUMO

GIP receptor antagonism with (Pro3)GIP protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat diet. Furthermore, cannabinoid CB1 receptor antagonism with AM251 reduces appetite and body weight gain in mice. The present study has examined and compared the effects of chronic daily administrations of (Pro3)GIP (25 nmol/kg body weight), AM251 (6 mg/kg body weight) and a combination of both drugs in high-fat fed mice. Daily i.p. injection of (Pro3)GIP, AM251 or combined drug administration over 22 days significantly (P<0.05 to <0.01) decreased body weight compared with saline-treated controls. This was associated with a significant (P<0.05 to <0.01) reduction of food intake in mice treated with AM251. Plasma glucose levels and glucose tolerance were significantly (P<0.05) lowered by 22 days (Pro3)GIP, AM251 or combined drug treatment. These changes were accompanied by a significant (P<0.05) improvement of insulin sensitivity in all treatment groups. In contrast, AM251 lacked effects on glucose tolerance, metabolic response to feeding and insulin sensitivity in high-fat mice when administered acutely. These data indicate that chemical blockade of GIP- or CB1-receptor signaling using (Pro3)GIP or AM251, respectively provides an effective means of countering obesity and related abnormalities induced by consumption of high-fat energy-rich diet. AM251 lacks acute effects on glucose homeostasis and there was no evidence of a synergistic effect of combined treatment with (Pro3)GIP.


Assuntos
Polipeptídeo Inibidor Gástrico/farmacologia , Intolerância à Glucose/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Apetite/efeitos dos fármacos , Área Sob a Curva , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Polipeptídeo Inibidor Gástrico/administração & dosagem , Intolerância à Glucose/sangue , Teste de Tolerância a Glucose , Injeções Intraperitoneais , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Obesidade/sangue , Obesidade/etiologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Pirazóis/administração & dosagem , Pirazóis/farmacologia
20.
J Endocrinol ; 192(1): 159-68, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17210753

RESUMO

Asparagus racemosus root has previously been reported to reduce blood glucose in rats and rabbits. In the present study, the effects of the ethanol extract and five partition fractions of the root of A. racemosus were evaluated on insulin secretion together with exploration of their mechanisms of action. The ethanol extract and each of the hexane, chloroform and ethyl acetate partition fractions concentration-dependently stimulated insulin secretion in isolated perfused rat pancreas, isolated rat islet cells and clonal beta-cells. The stimulatory effects of the ethanol extract, hexane, chloroform and ethyl acetate partition fractions were potentiated by glucose, 3-isobutyl-1-methyl xanthine IBMX, tolbutamide and depolarizing concentration of KCl. Inhibition of A. racemosus-induced insulin release was observed with diazoxide and verapamil. Ethanol extract and five fractions increased intracellular Ca(2+), consistent with the observed abolition of insulin secretory effects under Ca(2+) -free conditions. These findings reveal that constituents of A. racemosus root extracts have wide-ranging stimulatory effects on physiological insulinotropic pathways. Future work assessing the use of this plant as a source of active components may provide new opportunities for diabetes therapy.


Assuntos
Asparagus , Insulina/metabolismo , Pâncreas/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas , Animais , Cálcio/metabolismo , Células Cultivadas , Células Clonais , Diabetes Mellitus/terapia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Espaço Intracelular/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Pâncreas/efeitos dos fármacos , Perfusão , Fitoterapia , Ratos , Ratos Endogâmicos , Estimulação Química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA