Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomater Sci ; 9(18): 6183-6202, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34346411

RESUMO

Among women, ovarian cancer is the fifth most frequent type of cancer, and despite benefiting from current standard treatment plans, 90% of patients relapse in the subsequent 18 months and, eventually, perish. As a result, via embracing nanotechnological advancements in the field of medical science, researchers working in the areas of cancer therapy and imaging are looking for the next breakthrough treatment strategy to ensure lower cancer recurrence rates and improved outcomes for patients. Herein, we design a novel phototheranostic agent with optical features in the biological window of the electromagnetic spectrum via encapsulating a newly synthesized phthalocyanine dye within biocompatible protein nanoparticles, allowing the targeted fluorescence imaging and synergistic dual therapy of ovarian cancer. The nanosized agent displays great biocompatibility and enhanced aqueous biostability and photothermal activity, as well as high reactive-oxygen-species generation efficiency. To achieve the active targeting of the desired malignant tissue and suppress the rapid clearance of the photosensitive agent from the peritoneal cavity, the nanoparticles are biofunctionalized with an anti-folate receptor antibody. A2780 ovarian cancer cells are employed to confirm the improved targeting capabilities and the in vitro cytotoxic efficiency of the theranostic nanoparticles after exposure to a 660 nm LED lamp; upon measurement via MTT and flow cytometry assays, a significant 95% decrease in the total number of viable cells is seen. Additionally, the therapeutic performance of our newly designed nanoparticles was evaluated in vivo, via real-time thermal monitoring and histopathological assays, upon the irradiation of tumour-bearing mice with a 660 nm LED lamp (0.05 W cm-2). Foremost, separately from steady-state fluorescence imaging, we found that, via utilizing FLIM investigations, the differences in fluorescence lifetimes of antibody biofunctionalized and non-functionalized nanoparticles can be correlated to different intracellular localization and internalization pathways of the fluorescent agent, which is relevant for the development of a cutting-edge method for the detection of cancer cells that overexpress folate receptors at their surfaces.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Imagem Óptica , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Fototerapia , Medicina de Precisão , Nanomedicina Teranóstica
2.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361832

RESUMO

In recent times, researchers have aimed for new strategies to combat cancer by the implementation of nanotechnologies in biomedical applications. This work focuses on developing protein-based nanoparticles loaded with a newly synthesized NIR emitting and absorbing phthalocyanine dye, with photodynamic and photothermal properties. More precisely, we synthesized highly reproducible bovine serum albumin-based nanoparticles (75% particle yield) through a two-step protocol and successfully encapsulated the NIR active photosensitizer agent, achieving a good loading efficiency of 91%. Making use of molecular docking simulations, we confirm that the NIR photosensitizer is well protected within the nanoparticles, docked in site I of the albumin molecule. Encouraging results were obtained for our nanoparticles towards biomedical use, thanks to their negatively charged surface (-13.6 ± 0.5 mV) and hydrodynamic diameter (25.06 ± 0.62 nm), favorable for benefitting from the enhanced permeability and retention effect; moreover, the MTT viability assay upholds the good biocompatibility of our NIR active nanoparticles. Finally, upon irradiation with an NIR 785 nm laser, the dual phototherapeutic effect of our NIR fluorescent nanoparticles was highlighted by their excellent light-to-heat conversion performance (photothermal conversion efficiency 20%) and good photothermal and size stability, supporting their further implementation as fluorescent therapeutic agents in biomedical applications.


Assuntos
Indóis/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Soroalbumina Bovina/química , Proliferação de Células , Feminino , Humanos , Indóis/química , Isoindóis , Luz , Simulação de Acoplamento Molecular , Nanopartículas/química , Neoplasias Ovarianas/patologia , Fármacos Fotossensibilizantes/química , Espectroscopia de Luz Próxima ao Infravermelho , Células Tumorais Cultivadas
3.
Colloids Surf B Biointerfaces ; 203: 111755, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33862575

RESUMO

Herein, we report the fabrication of a nanotherapeutic platform integrating near-infrared (NIR) imaging with combined therapeutic potential through photodynamic (PDT) and photothermal therapies (PTT) and recognition functionality against ovarian cancer. Owing to its NIR fluorescence, singlet oxygen generation and heating capacity, IR780 iodide is exploited to construct a multifunctional nanosystem for single-wavelength NIR laser imaging-assisted dual-modal phototherapy. We opted for loading IR780 into polymeric Pluronic-F127-chitosan nanoformulation in order to overcome its hydrophobicity and toxicity and to allow functionalization with folic acid. The obtained nanocapsules show temperature-dependent swelling and spectroscopic behavior with favorable size distribution for cellular uptake at physiological temperatures, improved fluorescence properties and good stability. The fabricated nanocapsules can efficiently generate singlet oxygen in solution and are able to produce considerable temperature increase (46 °C) upon NIR laser irradiation. Viability assays on NIH-OVCAR-3 cells confirm the successful biocompatibilization of IR780 by encapsulating in Pluronic and chitosan polymers. NIR fluorescence imaging assays reveal the ability of folic-acid functionalized nanocapsules to serve as intracellular contrast agents and demonstrate their active targeting capacity against folate receptor expressing ovarian cancer cells (NIH-OVCAR-3). Consequently, the targeted nanocapsules show improved NIR laser induced phototherapeutic performance against NIH-OVCAR-3 cells compared to free IR780. We anticipate that this class of nanocapsules holds great promise as theranostic agents for application in image-guided dual PDT-PTT and imaging assisted surgery of ovarian cancer.


Assuntos
Quitosana , Hipertermia Induzida , Nanocápsulas , Neoplasias Ovarianas , Fotoquimioterapia , Apoptose , Linhagem Celular Tumoral , Quitosana/análogos & derivados , Feminino , Ácido Fólico , Humanos , Indóis , Imagem Óptica , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Fototerapia
4.
Nanotechnology ; 30(40): 405701, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31247611

RESUMO

In this work, we present a thorough study on the evaluation of the photothermal conversion efficiencies of gold nanobipyramids (AuBPs) under irradiation by two phototherapeutic laser lines at 785 and 808 nm. Due to fine tunability of the longitudinal localized surface plasmon resonance (LSPR) of AuBPs along the entire biological window, AuBPs have great potential to be applied as efficient photothermal agents in specific hyperthermia applications. Aiming to identify the most suitable AuBPs for each laser line, here we synthetized AuBPs of six different aspect ratios with longitudinal LSPR ranging from 662 to 929 nm and compared their intrinsic photothermal properties in colloidal solutions under laser irradiation at various experimental parameters such as sample volume, optical density and laser power. In addition, the experimental plasmonic resonances of the as-prepared AuBPs were perfectly simulated and their theoretical extinction and absorption cross-sections provided by finite-difference time-domain technique. Finally, we found photothermal conversion efficiencies ranging from 40% to 97% for all AuBPs systems under both NIR irradiation laser lines concluding that for the 785 nm excitation wavelength the AuBPs with longitudinal LSPR at 802 nm are most efficient, whereas in the case of the 808 nm laser line the AuBPs with optical response at 812 nm exhibit the best thermal performance. These studies are crucial for designing AuBPs as effective phototherapy agents acting alone or in combination with other plasmon-based or plasmon-assisted therapies.

5.
Front Chem ; 7: 55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800650

RESUMO

In this work, we design new plasmonic paper-based nanoplatforms with interesting capabilities in terms of sensitivity, efficiency, and reproducibility for promoting multimodal biodetection via Localized Surface Plasmon Resonance (LSPR), Surface Enhanced Raman Spectroscopy (SERS), and Metal Enhanced Fluorescence (MEF). To succeed, we exploit the unique optical properties of gold nanobipyramids (AuBPs) deposited onto the cellulose fibers via plasmonic calligraphy using a commercial pen. The first step of the biosensing protocol was to precisely graft the previously chemically-formed p-aminothiophenol@Biotin system, as active recognition element for target streptavidin detection, onto the plasmonic nanoplatform. The specific capture of the target protein was successfully demonstrated using three complementary sensing techniques. As a result, while the LSPR based sensing capabilities of the nanoplatform were proved by successive 13-18 nm red shifts of the longitudinal LSPR associated with the change of the surface RI after each step. By employing the ultrasensitive SERS technique, we were able to indirectly confirm the molecular identification of the biotin-streptavidin interaction due to the protein fingerprint bands assigned to amide I, amide III, and Trp vibrations. Additionally, the formed biotin-streptavidin complex acted as a spacer to ensure an optimal distance between the AuBP surface and the Alexa 680 fluorophore for achieving a 2-fold fluorescence emission enhancement of streptavidin@Alexa 680 on the biotinylated nanoplatform compared to the same complex on bare paper (near the plasmonic lines), implementing thus a novel MEF sensing nanoplatform. Finally, by integrating multiple LSPR, SERS, and MEF nanosensors with multiplex capability into a single flexible and portable plasmonic nanoplatform, we could overcome important limits in the field of portable point-of-care diagnostics.

6.
Nutrients ; 12(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892138

RESUMO

Sea buckthorn oil, derived from the fruits of the shrub, also termed seaberry or sandthorn, is without doubt a strikingly rich source of carotenoids, in particular zeaxanthin and ß-carotene. In the present study, sea buckthorn oil and an oil-in-water emulsion were subjected to a simulated gastro-intestinal in vitro digestion, with the main focus on xanthophyll bioaccessibility. Zeaxanthin mono- and di-esters were the predominant carotenoids in sea buckthorn oil, with zeaxanthin dipalmitate as the major compound (38.0%). A typical fatty acid profile was found, with palmitic (49.4%), palmitoleic (28.0%), and oleic (11.7%) acids as the dominant fatty acids. Taking into account the high amount of carotenoid esters present in sea buckthorn oil, the use of cholesterol esterase was included in the in vitro digestion protocol. Total carotenoid bioaccessibility was higher for the oil-in-water emulsion (22.5%) compared to sea buckthorn oil (18.0%) and even higher upon the addition of cholesterol esterase (28.0% and 21.2%, respectively). In the case of sea buckthorn oil, of all the free carotenoids, zeaxanthin had the highest bioaccessibility (61.5%), followed by lutein (48.9%), making sea buckthorn oil a potential attractive source of bioaccessible xanthophylls.


Assuntos
Hippophae/química , Óleos de Plantas/química , Xantofilas/farmacocinética , Disponibilidade Biológica , Digestão , Emulsões/química , Ácidos Graxos/análise , Frutas/química , Suco Gástrico/enzimologia , Humanos , Intestino Delgado/enzimologia , Luteína/farmacocinética , Esterol Esterase/metabolismo , Xantofilas/análise , Zeaxantinas/farmacocinética , beta Caroteno/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA