Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 93(5): 1385-1399, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30963202

RESUMO

Individuals treated for multidrug-resistant tuberculosis (MDR-TB) with aminoglycosides (AGs) in resource-limited settings often experience permanent hearing loss. However, AG ototoxicity has never been conceptually integrated or causally linked to MDR-TB patients' pre-treatment health condition. We sought to develop a framework that examines the relationships between pre-treatment conditions and AG-induced hearing loss among MDR-TB-infected individuals in sub-Saharan Africa. The adverse outcome pathway (AOP) approach was used to develop a framework linking key events (KEs) within a biological pathway that results in adverse outcomes (AO), which are associated with chemical perturbation of a molecular initiating event (MIE). This AOP describes pathways initiating from AG accumulation in hair cells, sound transducers of the inner ear immediately after AG administration. After administration, the drug catalyzes cellular oxidative stress due to overproduction of reactive oxygen species. Since oxidative stress inhibits mitochondrial protein synthesis, hair cells undergo apoptotic cell death, resulting in irreversible hearing loss (AO). We identified the following pre-treatment conditions that worsen the causal linkage between MIE and AO: HIV, malnutrition, aging, noise, smoking, and alcohol use. The KEs are: (1) nephrotoxicity, pre-existing hearing loss, and hypoalbuminemia that catalyzes AG accumulation; (2) immunodeficiency and antioxidant deficiency that trigger oxidative stress pathways; and (3) co-administration of mitochondrial toxic drugs that hinder mitochondrial protein synthesis, causing apoptosis. This AOP clearly warrants the development of personalized interventions for patients undergoing MDR-TB treatment. Such interventions (i.e., choosing less ototoxic drugs, scheduling frequent monitoring, modifying nutritional status, avoiding poly-pharmacy) will be required to limit the burden of AG ototoxicity.


Assuntos
Aminoglicosídeos/efeitos adversos , Antituberculosos/efeitos adversos , Ototoxicidade/etiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Rotas de Resultados Adversos , África Subsaariana , Aminoglicosídeos/administração & dosagem , Antituberculosos/administração & dosagem , Apoptose/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/fisiopatologia , Humanos , Ototoxicidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
2.
J Comp Neurol ; 521(7): 1510-32, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23047723

RESUMO

The relationship between structure and function is an invaluable context with which to explore biological mechanisms of normal and dysfunctional hearing. The systematic and topographic representation of frequency originates at the cochlea, and is retained throughout much of the central auditory system. The cochlear nucleus (CN), which initiates all ascending auditory pathways, represents an essential link for understanding frequency organization. A model of the CN that maps frequency representation in 3D would facilitate investigations of possible frequency specializations and pathologic changes that disturb frequency organization. Toward this goal, we reconstructed in 3D the trajectories of labeled auditory nerve (AN) fibers following multiunit recordings and dye injections in the anteroventral CN of the CBA/J mouse. We observed that each injection produced a continuous sheet of labeled AN fibers. Individual cases were normalized to a template using 3D alignment procedures that revealed a systematic and tonotopic arrangement of AN fibers in each subdivision with a clear indication of isofrequency laminae. The combined dataset was used to mathematically derive a 3D quantitative map of frequency organization throughout the entire volume of the CN. This model, available online (http://3D.ryugolab.com/), can serve as a tool for quantitatively testing hypotheses concerning frequency and location in the CN.


Assuntos
Núcleo Coclear/anatomia & histologia , Imageamento Tridimensional , Estimulação Acústica , Animais , Nervo Coclear/anatomia & histologia , Nervo Coclear/fisiologia , Núcleo Coclear/fisiologia , Eletrofisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos CBA
3.
Neurobiol Aging ; 33(12): 2892-902, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22405044

RESUMO

Efferent innervation of the cochlea undergoes extensive modification early in development, but it is unclear if efferent synapses are modified by age, hearing loss, or both. Structural alterations in the cochlea affecting information transfer from the auditory periphery to the brain may contribute to age-related hearing deficits. We investigated changes to efferent innervation in the vicinity of inner hair cells (IHCs) in young and old C57BL/6 mice using transmission electron microscopy to reveal increased efferent innervation of IHCs in older animals. Efferent contacts on IHCs contained focal presynaptic accumulations of small vesicles. Synaptic vesicle size and shape were heterogeneous. Postsynaptic cisterns were occasionally observed. Increased IHC efferent innervation was associated with a smaller number of afferent synapses per IHC, increased outer hair cell loss, and elevated auditory brainstem response thresholds. Efferent axons also formed synapses on afferent dendrites but with a reduced prevalence in older animals. Age-related reduction of afferent activity may engage signaling pathways that support the return to an immature state of efferent innervation of the cochlea.


Assuntos
Envelhecimento , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Vias Eferentes/fisiologia , Células Ciliadas Auditivas Internas/citologia , Sinapses/ultraestrutura , Estimulação Acústica , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Modelos Neurológicos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA