Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(4): 103036, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806679

RESUMO

Staphylococcus aureus controls its membrane biophysical properties using branched-chain fatty acids (BCFAs). The branched-chain acyl-CoA precursors, utilized to initiate fatty acid synthesis, are derived from branched-chain ketoacid dehydrogenase (Bkd), a multiprotein complex that converts α-keto acids to their corresponding acyl-CoAs; however, Bkd KO strains still contain BCFAs. Here, we show that commonly used rich medias contain substantial concentrations of short-chain acids, like 2-methylbutyric and isobutyric acids, that are incorporated into membrane BCFAs. Bkd-deficient strains cannot grow in defined medium unless it is supplemented with either 2-methylbutyric or isobutyric acid. We performed a screen of candidate KO strains and identified the methylbutyryl-CoA synthetase (mbcS gene; SAUSA300_2542) as required for the incorporation of 2-methylbutyric and isobutyric acids into phosphatidylglycerol. Our mass tracing experiments show that isobutyric acid is converted to isobutyryl-CoA that flows into the even-chain acyl-acyl carrier protein intermediates in the type II fatty acid biosynthesis elongation cycle. Furthermore, purified MbcS is an ATP-dependent acyl-CoA synthetase that selectively catalyzes the activation of 2-methylbutyrate and isobutyrate. We found that butyrate and isovalerate are poor MbcS substrates and activity was not detected with acetate or short-chain dicarboxylic acids. Thus, MbcS functions to convert extracellular 2-methylbutyric and isobutyric acids to their respective acyl-CoAs that are used by 3-ketoacyl-ACP synthase III (FabH) to initiate BCFA biosynthesis.


Assuntos
Isobutiratos , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ligases , Ácidos Graxos/metabolismo
2.
J Biol Chem ; 291(1): 171-81, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26567338

RESUMO

Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Ácidos Graxos/metabolismo , Neisseria/enzimologia , Proteínas de Bactérias/isolamento & purificação , Benzofuranos/farmacologia , Coenzima A Ligases/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/isolamento & purificação , Ácidos Hidroxâmicos/farmacologia , Lipopolissacarídeos/farmacologia , Modelos Biológicos , Neisseria/efeitos dos fármacos , Neisseria/crescimento & desenvolvimento , Fosfolipídeos/metabolismo , Pironas/farmacologia , Treonina/análogos & derivados , Treonina/farmacologia
3.
Mol Microbiol ; 92(2): 234-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24673884

RESUMO

Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4 ) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Fosfotransferases/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Fosfotransferases/genética , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
4.
Antimicrob Agents Chemother ; 57(11): 5729-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979734

RESUMO

Inactivation of acetyl-coenzyme A (acetyl-CoA) carboxylase confers resistance to fatty acid synthesis inhibitors in Staphylococcus aureus on media supplemented with fatty acids. The addition of anteiso-fatty acids (1 mM) plus lipoic acid supports normal growth of ΔaccD strains, but supplementation with mammalian fatty acids was less efficient. Mice infected with strain RN6930 developed bacteremia, but bacteria were not detected in mice infected with its ΔaccD derivative. S. aureus bacteria lacking acetyl-CoA carboxylase can be propagated in vitro but were unable to proliferate in mice, suggesting that the acquisition of inactivating mutations in this enzyme is not a mechanism for the evasion of fatty acid synthesis inhibitors.


Assuntos
Acetil-CoA Carboxilase/genética , Ácidos Graxos/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/crescimento & desenvolvimento , Acetil-CoA Carboxilase/deficiência , Animais , Antibacterianos/farmacologia , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/antagonistas & inibidores , Ácidos Graxos/farmacologia , Deleção de Genes , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
5.
Proc Natl Acad Sci U S A ; 108(37): 15378-83, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876172

RESUMO

The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements.


Assuntos
Inibidores da Síntese de Ácidos Graxos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Acetil-CoA Carboxilase/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Benzofuranos/farmacologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Testes de Sensibilidade Microbiana , Mutação/genética , Fenótipo , Pironas/farmacologia , Staphylococcus aureus/enzimologia , Streptococcus pneumoniae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA