Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143282

RESUMO

Manna is produced from the spontaneous solidification of the sap of some Fraxinus species, and, owing its content in mannitol, is used in medicine as a mild laxative. Manna is also a rich source of characteristic bio-phenols with reducing, antioxidant and anti-inflammatory properties. This study assesses the activity of a hydrophilic extract of manna (HME) on cellular and molecular events in human colon-rectal cancer cells. HME showed a time- and concentration-dependent anti-proliferative activity, measured by MTT assay, in all the cell lines examined, namely Caco-2, HCT-116 and HT-29. The amounts of HME that caused 50% of cell death after a 24 h treatment were 8.51 ± 0.77, 10.73 ± 1.22 and 28.92 ± 1.99 mg manna equivalents/mL, respectively; no toxicity was observed in normally differentiated Caco-2 intestinal cells. Hydroxytyrosol, a component of HME known for its cytotoxic effects on colon cancer cells, was ineffective, at least at the concentration occurring in the extract. Through flow-cytometric techniques and Western blot analysis, we show that HME treatment causes apoptosis, assessed by phosphatidylserine exposure, as well as a loss of mitochondrial membrane potential, an intracellular formation of reactive oxygen species (ROS), increases in the levels of cleaved PARP-1, caspase 3 and Bax, and a decrease in Bcl-2 expression. Moreover, HME interferes with cell cycle progression, with a block at the G1/S transition. In conclusion, the phytocomplex extracted from manna exerts an anti-proliferative activity on human colon cancer cells through the activation of mitochondrial pathway-mediated apoptosis and cell cycle arrest. Our data may suggest that manna could have the potential to exert chemo-preventive effects for the intestine.


Assuntos
Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Fraxinus/química , Mitocôndrias/metabolismo , Extratos Vegetais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Mitocôndrias/patologia , Proteínas de Neoplasias/biossíntese , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Cell Physiol Biochem ; 53(6): 933-947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805226

RESUMO

BACKGROUND/AIMS: We showed that patho-physiological concentrations of either 7-keto-cholesterol (7-KC), or cholestane-3beta, 5alpha, 6beta-triol (TRIOL) caused the eryptotic death of human red blood cells (RBC), strictly dependent on the early production of reactive oxygen species (ROS). The goal of the current study was to assess the contribution of the erythrocyte ROS-generating enzymes, NADPH oxidase (RBC-NOX), nitric oxide synthase (RBC-NOS) and xanthine oxido-reductase (XOR) to the oxysterol-dependent eryptosis and pertinent activation pathways. METHODS: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, reactive oxygen/nitrogen species (RONS) and nitric oxide formation from 2',7'-dichloro-dihydrofluorescein (DCF-DA) and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) -dependent fluorescence, respectively; Akt1, phospho-NOS3 Ser1177, and PKCζ from Western blot analysis. The activity of individual 7-KC (7 µM) and TRIOL (2, µM) on ROS-generating enzymes and relevant activation pathways was assayed in the presence of Diphenylene iodonium chloride (DPI), N-nitro-L-arginine methyl ester (L-NAME), allopurinol, NSC23766 and LY294002, inhibitors in this order of RBC-NOX, RBC-NOS, XOR and upstream regulatory proteins Rac GTPase and phosphoinositide3 Kinase (PI3K); hemoglobin oxidation from spectrophotometric analysis. RESULTS: RBC-NOX was the target of 7-KC, through a signaling including Rac GTPase and PKCζ, whereas TRIOL caused activation of RBC-NOS according to the pathway PI3K/Akt, with the concurrent activity of a Rac-GTPase. In concomitance with the TRIOL-induced .NO production, formation of methemoglobin with global loss of heme were observed, ascribable to nitrosative stress. XOR, activated after modification of the redox environment by either RBC-NOX or RBC-NOS activity, concurred to the overall oxidative/nitrosative stress by either oxysterols. When 7-KC and TRIOL were combined, they acted independently and their effect on ROS/RONS production and PS exposure appeared the result of the effects of the oxysterols on RBC-NOX and RBC-NOS. CONCLUSION: Eryptosis of human RBCs may be caused by either 7-KC or TRIOL by oxidative/nitrosative stress through distinct signaling cascades activating RBC-NOX and RBC-NOS, respectively, with the complementary activity of XOR; when combined, the oxysterols act independently and both concur to the final eryptotic effect.


Assuntos
Colestanóis/farmacologia , Eriptose/efeitos dos fármacos , Cetocolesteróis/farmacologia , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Hemoglobinas/química , Humanos , Oxirredução , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA