Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 747229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776851

RESUMO

The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.

2.
Neurochem Int ; 120: 182-190, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30170018

RESUMO

GABA transporters regulate synaptic GABA levels and dysfunctions in this system might result in psychiatric disorders. The endocannabinoid system (ECS) is the main circuit breaker in the nervous system and may alter noradrenaline (NA) communication, which in turn modulates the release of GABA. However, a close relationship between these systems has not been recognized. We asked whether NA and ECS might control extracellular GABA levels in slices of frontal cortex (FC) of adolescent Swiss mice with 40 days after birth (PN40). Here we show that NA and isoproterenol (ISO), a beta-adrenergic agonist, increased [3H]-GABA uptake in mice FC, while alpha1-adrenergic agonist phenylephrine had no effect. As GAT-1 is expressed and fully functional at the FC, addition of NO-711, a GAT-1 inhibitor, dose dependently blocked [3H]-GABA uptake. The increase of [3H]-GABA uptake induced by ISO was also blocked by NO-711. [3H]-GABA release induced by 80 mM KCl was reduced by NO-711, but not by removal of Ca2+. ISO also increased cyclic AMP (cAMP) levels and addition of WIN 55,212-2, a mixed CB1/CB2 receptor agonist, inhibited the effect of ISO in GABA uptake increase, GAT-1 expression and cAMP levels compared to control. Our data show that GABA transport increased by NA and ISO is negatively regulated by cannabinoid receptor agonist WIN55,212-2.


Assuntos
Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Lobo Frontal/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de GABA/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Animais , Endocanabinoides/metabolismo , Lobo Frontal/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Camundongos , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/efeitos dos fármacos
3.
Nutrients ; 9(11)2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29156608

RESUMO

Polyunsaturated fatty acids and antioxidants are important mediators in the central nervous system. Lipid derivatives may control the production of proinflammatory agents and regulate NF-κB activity, microglial activation, and fatty acid oxidation; on the other hand, antioxidants, such as glutathione and ascorbate, have been shown to signal through transmitter receptors and protect against acute and chronic oxidative stress, modulating the activity of different signaling pathways. Several authors have investigated the role of these nutrients in the brains of the young and the aged in degenerative diseases such as Alzheimer's and Parkinson's, and during brain aging due to adiposity- and physical inactivity-mediated metabolic disturbances, chronic inflammation, and oxidative stress. Through a literature review, we aimed to highlight recent data on the role of adiposity, fatty acids, antioxidants, and physical inactivity in the pathophysiology of the brain and in the molecular mechanisms of senescence. Data indicate the complexity and necessity of endogenous/dietary antioxidants for the maintenance of redox status and the control of neuroglial signaling under stress. Recent studies also indicate that omega-3 and -6 fatty acids act in a competitive manner to generate mediators for energy metabolism, influencing feeding behavior, neural plasticity, and memory during aging. Finding pharmacological or dietary resources that mitigate or prevent neurodegenerative affections continues to be a great challenge and requires additional effort from researchers, clinicians, and nutritionists in the field.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Exercício Físico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Encéfalo/fisiologia , Dieta , Humanos , Inflamação/prevenção & controle , Modelos Animais , Sistema Nervoso/efeitos dos fármacos , Doenças Neurodegenerativas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA