Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 31(8): 3678-3700, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749727

RESUMO

Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Adulto , Animais , Estimulação Elétrica , Eletroencefalografia , Fenômenos Eletrofisiológicos , Epilepsia/fisiopatologia , Espaço Extracelular/fisiologia , Feminino , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Microeletrodos , Pessoa de Meia-Idade , Córtex Somatossensorial/fisiologia , Análise de Ondaletas , Adulto Jovem
2.
Invest Ophthalmol Vis Sci ; 61(4): 5, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271885

RESUMO

Purpose: Neurons carry electrical signals and communicate via electrical activities. The therapeutic potential of electrical stimulation (ES) for the nervous system, including the retina, through improvement of cell survival and function has been noted. Here we investigated the neuroprotective and regenerative potential of ES in a mouse model of inherited retinal degeneration. Methods: Rhodopsin-deficient (Rho-/-) mice received one or two sessions of transpalpebral ES or sham treatments for 7 consecutive days. Intraperitoneal injection of 5-ethynyl-2'-deoxyuridine was used to label proliferating cells. Weekly electroretinograms were performed to monitor retinal function. Retinal morphology, photoreceptor survival, and regeneration were evaluated in vivo using immunohistochemistry and genetic fate-mapping techniques. Müller cell (MC) cultures were employed to further define the optimal conditions of ES application. Results: Noninvasive transpalpebral ES in Rho-/- mice improved photoreceptor survival and electroretinography function in vivo. ES also triggered residential retinal progenitor-like cells such as MCs to reenter the cell cycle, possibly producing new photoreceptors, as shown by immunohistochemistry and genetic fate-mapping techniques. ES directly stimulated cell proliferation and the expression of progenitor cell markers in MC cultures, at least partially through bFGF signaling. Conclusions: Our study showed that transpalpebral ES improved photoreceptor survival and retinal function and induced the proliferation, probably photoreceptor regeneration, of MCs; this occurs via stimulation of the bFGF pathways. These results suggest the exciting possibility of applying noninvasive ES as a versatile tool for preventing photoreceptor loss and mobilizing endogenous progenitors for reversing vision loss in patients with photoreceptor degeneration.


Assuntos
Modelos Animais de Doenças , Terapia por Estimulação Elétrica , Células Fotorreceptoras de Vertebrados/citologia , Degeneração Retiniana/terapia , Células Ganglionares da Retina/fisiologia , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Eletrorretinografia , Células Ependimogliais , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Rodopsina/genética
3.
Nat Commun ; 3: 921, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22735449

RESUMO

Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices.


Assuntos
Estimulação Elétrica , Magnetoterapia/métodos , Magnetismo , Humanos , Modelos Teóricos , Neurônios/metabolismo , Estimulação Magnética Transcraniana
4.
J Neural Eng ; 8(3): 035005, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21593546

RESUMO

Retinal prostheses aim to restore functional vision to those blinded by outer retinal diseases using electric stimulation of surviving retinal neurons. The ability to replicate the spatiotemporal pattern of ganglion cell spike trains present under normal viewing conditions is presumably an important factor for restoring high-quality vision. In order to replicate such activity with a retinal prosthesis, it is important to consider both how visual information is encoded in ganglion cell spike trains, and how retinal neurons respond to electric stimulation. The goal of the current review is to bring together these two concepts in order to guide the development of more effective stimulation strategies. We review the experiments to date that have studied how retinal neurons respond to electric stimulation and discuss these findings in the context of known retinal signaling strategies. The results from such in vitro studies reveal the advantages and disadvantages of activating the ganglion cell directly with the electric stimulus (direct activation) as compared to activation of neurons that are presynaptic to the ganglion cell (indirect activation). While direct activation allows high temporal but low spatial resolution, indirect activation yields improved spatial resolution but poor temporal resolution. Finally, we use knowledge gained from in vitro experiments to infer the patterns of elicited activity in ongoing human trials, providing insights into some of the factors limiting the quality of prosthetic vision.


Assuntos
Potenciais de Ação/fisiologia , Terapia por Estimulação Elétrica/métodos , Modelos Biológicos , Células Ganglionares da Retina/fisiologia , Percepção Visual/fisiologia , Próteses Visuais , Animais , Humanos , Armazenamento e Recuperação da Informação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA