Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 29(7): 1678-1696, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28687655

RESUMO

The lipid composition of thylakoid membranes inside chloroplasts is conserved from leaves to developing embryos. A finely tuned lipid assembly machinery is required to build these membranes during Arabidopsis thaliana development. Contrary to thylakoid lipid biosynthetic enzymes, the functions of most predicted chloroplast lipid-degrading enzymes remain to be elucidated. Here, we explore the biochemistry and physiological function of an Arabidopsis thylakoid membrane-associated lipase, PLASTID LIPASE1 (PLIP1). PLIP1 is a phospholipase A1 In vivo, PLIP1 hydrolyzes polyunsaturated acyl groups from a unique chloroplast-specific phosphatidylglycerol that contains 16:1 Δ3trans as its second acyl group. Thus far, a specific function of this 16:1 Δ3trans -containing phosphatidylglycerol in chloroplasts has remained elusive. The PLIP1 gene is highly expressed in seeds, and plip1 mutant seeds contain less oil and exhibit delayed germination compared with the wild type. Acyl groups released by PLIP1 are exported from the chloroplast, reincorporated into phosphatidylcholine, and ultimately enter seed triacylglycerol. Thus, 16:1 Δ3trans uniquely labels a small but biochemically active plastid phosphatidylglycerol pool in developing Arabidopsis embryos, which is subject to PLIP1 activity, thereby contributing a small fraction of the polyunsaturated fatty acids present in seed oil. We propose that acyl exchange involving thylakoid lipids functions in acyl export from plastids and seed oil biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Lipase/metabolismo , Fosfolipases A1/metabolismo , Óleos de Plantas/metabolismo , Plastídeos/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Lipase/genética , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/metabolismo , Fosfolipases A1/genética , Filogenia , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Especificidade por Substrato , Triglicerídeos/metabolismo
2.
Plant Cell ; 19(6): 2006-22, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17557808

RESUMO

Glycolysis is a ubiquitous pathway thought to be essential for the production of oil in developing seeds of Arabidopsis thaliana and oil crops. Compartmentation of primary metabolism in developing embryos poses a significant challenge for testing this hypothesis and for the engineering of seed biomass production. It also raises the question whether there is a preferred route of carbon from imported photosynthate to seed oil in the embryo. Plastidic pyruvate kinase catalyzes a highly regulated, ATP-producing reaction of glycolysis. The Arabidopsis genome encodes 14 putative isoforms of pyruvate kinases. Three genes encode subunits alpha, beta(1), and beta(2) of plastidic pyruvate kinase. The plastid enzyme prevalent in developing seeds likely has a subunit composition of 4alpha4beta(1), is most active at pH 8.0, and is inhibited by Glu. Disruption of the gene encoding the beta(1) subunit causes a reduction in plastidic pyruvate kinase activity and 60% reduction in seed oil content. The seed oil phenotype is fully restored by expression of the beta(1) subunit-encoding cDNA and partially by the beta(2) subunit-encoding cDNA. Therefore, the identified pyruvate kinase catalyzes a crucial step in the conversion of photosynthate into oil, suggesting a preferred plastid route from its substrate phosphoenolpyruvate to fatty acids.


Assuntos
Arabidopsis/enzimologia , Óleos de Plantas/metabolismo , Plastídeos/enzimologia , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Sementes/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Carbono/metabolismo , Cotilédone/ultraestrutura , DNA Bacteriano/metabolismo , DNA Complementar/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicólise , Cinética , Metabolismo dos Lipídeos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação/genética , Fenótipo , Plastídeos/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Transporte Proteico , Piruvato Quinase/genética , Proteínas Recombinantes/metabolismo , Sementes/metabolismo , Especificidade por Substrato
3.
Plant Cell ; 17(11): 3094-110, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16199613

RESUMO

Phosphatidate (PA) is a central metabolite of lipid metabolism and a signaling molecule in many eukaryotes, including plants. Mutations in a permease-like protein, TRIGALACTOSYLDIACYLGLYCEROL1 (TGD1), in Arabidopsis thaliana caused the accumulation of triacylglycerols, oligogalactolipids, and PA. Chloroplast lipids were altered in their fatty acid composition consistent with an impairment of lipid trafficking from the endoplasmic reticulum (ER) to the chloroplast and a disruption of thylakoid lipid biosynthesis from ER-derived precursors. The process mediated by TGD1 appears to be essential as mutation of the protein caused a high incidence of embryo abortion. Isolated tgd1 mutant chloroplasts showed a decreased ability to incorporate PA into galactolipids. The TGD1 protein was localized to the inner chloroplast envelope and appears to be a component of a lipid transporter. As even partial disruption of TGD1 function has drastic consequences on central lipid metabolism, the tgd1 mutant provides a tool to explore regulatory mechanisms governing lipid homeostasis and lipid trafficking in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Fosfolipídeos/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Transporte Biológico Ativo/fisiologia , Cloroplastos/ultraestrutura , Retículo Endoplasmático/metabolismo , Galactolipídeos/metabolismo , Homeostase/fisiologia , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/genética , Óleos de Plantas/metabolismo , Sementes/metabolismo , Tilacoides/metabolismo
4.
Plant Cell ; 17(4): 1252-67, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15772286

RESUMO

Medium-length methylketones (C7-C15) are highly effective in protecting plants from numerous pests. We used a biochemical genomics approach to elucidate the pathway leading to synthesis of methylketones in the glandular trichomes of the wild tomato Lycopersicon hirsutum f glabratum (accession PI126449). A comparison of gland EST databases from accession PI126449 and a second L. hirsutum accession, LA1777, whose glands do not contain methylketones, showed that the expression of genes for fatty acid biosynthesis is elevated in PI126449 glands, suggesting de novo biosynthesis of methylketones. A cDNA abundant in the PI126449 gland EST database but rare in the LA1777 database was similar in sequence to plant esterases. This cDNA, designated Methylketone Synthase 1 (MKS1), was expressed in Escherichia coli and the purified protein used to catalyze in vitro reactions in which C12, C14, and C16 beta-ketoacyl-acyl-carrier-proteins (intermediates in fatty acid biosynthesis) were hydrolyzed and decarboxylated to give C11, C13, and C15 methylketones, respectively. Although MKS1 does not contain a classical transit peptide, in vitro import assays showed that it was targeted to the stroma of plastids, where fatty acid biosynthesis occurs. Levels of MKS1 transcript, protein, and enzymatic activity were correlated with levels of methylketones and gland density in a variety of tomato accessions and in different plant organs.


Assuntos
Enzimas/metabolismo , Cetonas/metabolismo , Lycopodiaceae/enzimologia , Lycopodiaceae/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cloroplastos/enzimologia , DNA Complementar/análise , DNA Complementar/genética , Bases de Dados de Proteínas , Metabolismo Energético/fisiologia , Enzimas/genética , Enzimas/isolamento & purificação , Ácidos Graxos/biossíntese , Genoma de Planta , Genômica , Cetonas/química , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Estruturas Vegetais/enzimologia , Estruturas Vegetais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA