Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Surg Res ; 288: 108-117, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36963297

RESUMO

INTRODUCTION: Mitochondrial dysfunction is implicated in the metabolic myopathy accompanying peripheral artery disease (PAD) and critical limb ischemia (CLI). Type-2 diabetes mellitus (T2DM) is a major risk factor for PAD development and progression to CLI and may also independently be related to mitochondrial dysfunction. We set out to determine the effect of T2DM in the relationship between CLI and muscle mitochondrial respiratory capacity and coupling control. METHODS: We studied CLI patients undergoing revascularization procedures or amputation, and non-CLI patients with or without T2DM of similar age. Mitochondrial respiratory capacity and function were determined in lower limb permeabilized myofibers by high-resolution respirometry. RESULTS: Fourteen CLI patients (65 ± 10y) were stratified into CLI patients with (n = 8) or without (n = 6) T2DM and were compared to non-CLI patients with (n = 18; 69 ± 5y) or without (n = 19; 71 ± 6y) T2DM. Presence of CLI but not T2DM had a marked impact on all mitochondrial respiratory states in skeletal muscle, adjusted for the effects of sex. Leak respiration (State 2, P < 0.025 and State 4o, P < 0.01), phosphorylating respiration (P < 0.001), and maximal respiration in the uncoupled state (P < 0.001), were all suppressed in CLI patients, independent of T2DM. T2DM had no significant effect on mitochondrial respiratory capacity and function in adults without CLI. CONCLUSIONS: Skeletal muscle mitochondrial respiratory capacity was blunted by ∼35% in patients with CLI. T2DM was not associated with muscle oxidative capacity and did not moderate the relationship between muscle mitochondrial respiratory capacity and CLI.


Assuntos
Diabetes Mellitus , Doença Arterial Periférica , Adulto , Humanos , Isquemia Crônica Crítica de Membro , Músculo Esquelético , Doença Arterial Periférica/complicações , Fatores de Risco , Metabolismo Energético , Isquemia/complicações , Isquemia/metabolismo , Resultado do Tratamento , Salvamento de Membro
2.
J Appl Physiol (1985) ; 128(4): 967-977, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191600

RESUMO

Older adults are at increased risk of being bedridden and experiencing negative health outcomes including the loss of muscle tissue and functional capacity. We hypothesized that supplementing daily meals with a small quantity (3-4 g/meal) of leucine would partially preserve lean leg mass and function of older adults during bed rest. During a 7-day bed rest protocol, followed by 5 days of inpatient rehabilitation, healthy older men and women (67.8 ± 1.1 yr, 14 men; 6 women) were randomized to receive isoenergetic meals supplemented with leucine (LEU, 0.06 g/kg/meal; n = 10) or an alanine control (CON, 0.06 g/kg/meal; n = 10). Outcomes were assessed at baseline, following bed rest, and after rehabilitation. Body composition was measured by dual-energy X-ray absorptiometry. Functional capacity was assessed by knee extensor isokinetic and isometric dynamometry, peak aerobic capacity, and the short physical performance battery. Muscle fiber type, cross-sectional area, signaling protein expression levels, and single fiber characteristics were determined from biopsies of the vastus lateralis. Leucine supplementation reduced the loss of leg lean mass during bed rest (LEU vs. CON: -423 vs. -1035 ± 143 g; P = 0.008) but had limited impact on strength or endurance-based functional outcomes. Similarly, leucine had no effect on markers of anabolic signaling and protein degradation during bed rest or rehabilitation. In conclusion, providing older adults with supplemental leucine has minimal impact on total energy or protein consumption and has the potential to partially counter some, but not all, of the negative effects of inactivity on muscle health.NEW & NOTEWORTHY Skeletal muscle morphology and function in older adults was significantly compromised by 7 days of disuse. Leucine supplementation partially countered the loss of lean leg mass but did not preserve muscle function or positively impact changes at the muscle fiber level associated with bed rest or rehabilitation. Of note, our data support a relationship between myonuclear content and adaptations to muscle atrophy at the whole limb and single fiber level.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Idoso , Repouso em Cama/efeitos adversos , Suplementos Nutricionais , Feminino , Humanos , Leucina , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/tratamento farmacológico , Transtornos Musculares Atróficos/patologia
3.
J Nutr ; 149(7): 1149-1158, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095313

RESUMO

BACKGROUND: Muscle protein synthesis (MPS) can be stimulated by ingestion of protein sources, such as whey, casein, or soy. Protein supplementation can enhance muscle protein synthesis after exercise and may preserve skeletal muscle mass and function in aging adults. Therefore, identifying protein sources with higher anabolic potency is of high significance. OBJECTIVE: The aim of this study was to determine the anabolic potency and efficacy of a novel whey protein hydrolysate mixture (WPH) on mechanistic target of rapamycin complex 1 (mTORC1) signaling and skeletal MPS in healthy young subjects. METHODS: Ten young men (aged 28.7 ± 3.6 y, 25.2 ± 2.9 kg/m2 body mass index [BMI]) were recruited into a double-blind two-way crossover trial. Subjects were randomized to receive either 0.08 g/kg of body weight (BW) of WPH or an intact whey protein (WHEY) mixture during stable isotope infusion experiments. Fractional synthetic rate, leucine and phenylalanine kinetics, and markers of amino acid sensing were assessed as primary outcomes before and 1-3 h after protein ingestion using a repeated measures mixed model. RESULTS: Blood leucine concentration, delivery of leucine to muscle, transport of leucine from blood into muscle and intracellular muscle leucine concentration significantly increased to a similar extent 1 h after ingestion of both mixtures (P < 0.05). Phosphorylation of S6K1 (i.e. a marker of mTORC1 activation) increased equally by ∼20% 1-h postingestion (P < 0.05). Ingestion of WPH and WHEY increased mixed MPS similarly in both groups by ∼43% (P < 0.05); however, phenylalanine utilization for synthesis increased in both treatments 1-h postingestion but remained elevated 3-h postingestion only in the WPH group (P < 0.05). CONCLUSIONS: We conclude that a small dose of WPH effectively increases leucine transport into muscle, activating mTORC1 and stimulating MPS in young men. WPH anabolic potency and efficacy for promoting overall muscle protein anabolism is similar to WHEY, an intact protein source. This trial was registered at clinicaltrials.gov as NCT03313830.


Assuntos
Aminoácidos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Adulto , Aminoácidos/sangue , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Humanos , Hidrólise , Insulina/metabolismo , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/metabolismo
4.
J Gerontol A Biol Sci Med Sci ; 74(10): 1598-1604, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29750251

RESUMO

BACKGROUND: Essential amino acids (EAA) and aerobic exercise (AE) acutely and independently stimulate skeletal muscle protein anabolism in older adults. OBJECTIVE: In this Phase 1, double-blind, placebo-controlled, randomized clinical trial, we determined if chronic EAA supplementation, AE training, or a combination of the two interventions could improve muscle mass and function by stimulating muscle protein synthesis. METHODS: We phone-screened 971, enrolled 109, and randomized 50 independent, low-active, nonfrail, and nondiabetic older adults (age 72 ± 1 years). We used a 2 × 2 factorial design. The interventions were: daily nutritional supplementation (15 g EAA or placebo) and physical activity (supervised AE training 3 days/week or monitored habitual activity) for 24 weeks. Muscle strength, physical function, body composition, and muscle protein synthesis were measured before and after the 24-week intervention. RESULTS: Forty-five subjects completed the 24-week intervention. VO2peak and walking speed increased (p < .05) in both AE groups, irrespective of supplementation type, but muscle strength increased only in the EAA + AE group (p < .05). EAA supplementation acutely increased (p < .05) muscle protein synthesis from basal both before and after the intervention, with a larger increase in the EAA + AE group after the intervention. Total and regional lean body mass did not change significantly with any intervention. CONCLUSIONS: In nonfrail, independent, healthy older adults AE training increased walking speed and aerobic fitness, and, when combined with EAA supplementation, it also increased muscle strength and EAA-stimulated muscle protein synthesis. These increases occurred without improvements in muscle mass.


Assuntos
Aminoácidos Essenciais/uso terapêutico , Suplementos Nutricionais , Exercício Físico , Sarcopenia/prevenção & controle , Idoso , Composição Corporal , Método Duplo-Cego , Tolerância ao Exercício , Feminino , Humanos , Masculino , Proteínas Musculares/metabolismo , Força Muscular , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia , Velocidade de Caminhada
5.
Physiol Rep ; 5(11)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28596299

RESUMO

Aged skeletal muscle has an attenuated and delayed ability to proliferate satellite cells in response to resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a focal point for cell growth, however, the effect of postexercise mTORC1 activation on human skeletal muscle satellite cell (SC) proliferation is unknown. To test the proliferative capacity of skeletal muscle SC in aging muscle to a potent mTORC1 activator (i.e., EAA; essential amino acids) we recruited older (~72y) men to conduct leg resistance exercise (8setsx10reps) without (-EAA; n = 8) and with (+EAA: n = 11) ingestion of 10 g of EAA 1 h postexercise. Muscle biopsies were taken before exercise (Pre) and 24 h postexercise (Post) for assessment of expression and fiber type-specific Pax7+ SC, Ki67+Pax7+ SC and MyoD+ SC -EAA did not show an increase in Pax7+ satellite cells at Post(P > 0.82). Although statistical significance for an increase in Pax7 +  SC at 24 h post-RE was not observed in +EAA versus -EAA, we observed trends for a treatment difference (P < 0.1). When examining the change from Pre to Post trends were demonstrated (#/myofiber: P = 0.076; and %/myonuclei: P = 0.065) for a greater increase in +EAA versus -EAA Notably, we found an increase SC proliferation in +EAA, but not -EAA with increase in Ki67+ SC and MyoD+ cells (P < 0.05). Ki67+ SC also exhibited a significant group difference Post (P < 0.010). Pax7+ SC in fast twitch myofibers did not change and were not different between groups (P > 0.10). CDK2, MEF2C, RB1 mRNA only increased in +EAA (P < 0.05). Acute muscle satellite cell proliferative capacity may be partially rescued with postexercise EAA ingestion in older men.


Assuntos
Aminoácidos Essenciais/farmacologia , Proliferação de Células , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Idoso , Aminoácidos Essenciais/administração & dosagem , Estudos de Casos e Controles , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Suplementos Nutricionais , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Med Sci Sports Exerc ; 49(6): 1197-1208, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346813

RESUMO

It has been proposed that protein supplementation during resistance exercise training enhances muscle hypertrophy. The degree of hypertrophy during training is controlled in part through the activation of satellite cells and myonuclear accretion. PURPOSE: This study aimed to determine the efficacy of protein supplementation (and the type of protein) during traditional resistance training on myofiber cross-sectional area, satellite cell content, and myonuclear addition. METHODS: Healthy young men participated in supervised whole-body progressive resistance training 3 d·wk for 12 wk. Participants were randomized to one of three groups ingesting a daily 22-g macronutrient dose of soy-dairy protein blend (PB, n = 22), whey protein isolate (WP, n = 15), or an isocaloric maltodextrin placebo (MDP, n = 17). Lean mass, vastus lateralis myofiber-type-specific cross-sectional area, satellite cell content, and myonuclear addition were assessed before and after resistance training. RESULTS: PB and the pooled protein treatments (PB + WP = PRO) exhibited a greater whole-body lean mass %change compared with MDP (P = 0.057 for PB) and (P = 0.050 for PRO), respectively. All treatments demonstrated similar leg muscle hypertrophy and vastus lateralis myofiber-type-specific cross-sectional area (P < 0.05). Increases in myosin heavy chain I and II myofiber satellite cell content and myonuclei content were also detected after exercise training (P < 0.05). CONCLUSION: Protein supplementation during resistance training has a modest effect on whole-body lean mass as compared with exercise training without protein supplementation, and there was no effect on any outcome between protein supplement types (blend vs whey). However, protein supplementation did not enhance resistance exercise-induced increases in myofiber hypertrophy, satellite cell content, or myonuclear addition in young healthy men. We propose that as long as protein intake is adequate during muscle overload, the adaptations in muscle growth and function will not be influenced by protein supplementation.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Fibras Musculares Esqueléticas/citologia , Treinamento Resistido , Adaptação Fisiológica , Índice de Massa Corporal , Método Duplo-Cego , Humanos , Masculino , Fibras Musculares Esqueléticas/fisiologia , Força Muscular/fisiologia , Miosina Tipo I/análise , Miosina Tipo II/análise , RNA/análise , Células Satélites de Músculo Esquelético/fisiologia
7.
J Nutr ; 143(4): 410-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23343671

RESUMO

High-quality proteins such as soy, whey, and casein are all capable of promoting muscle protein synthesis postexercise by activating the mammalian target of rapamycin (mTORC1) signaling pathway. We hypothesized that a protein blend of soy and dairy proteins would capitalize on the unique properties of each individual protein and allow for optimal delivery of amino acids to prolong the fractional synthetic rate (FSR) following resistance exercise (RE). In this double-blind, randomized, clinical trial, 19 young adults were studied before and after ingestion of ∼19 g of protein blend (PB) or ∼18 g whey protein (WP) consumed 1 h after high-intensity leg RE. We examined mixed-muscle protein FSR by stable isotopic methods and mTORC1 signaling with western blotting. Muscle biopsies from the vastus lateralis were collected at rest (before RE) and at 3 postexercise time points during an early (0-2 h) and late (2-4 h) postingestion period. WP ingestion resulted in higher and earlier amplitude of blood branched-chain amino acid (BCAA) concentrations. PB ingestion created a lower initial rise in blood BCAA but sustained elevated levels of blood amino acids later into recovery (P < 0.05). Postexercise FSR increased equivalently in both groups during the early period (WP, 0.078 ± 0.009%; PB, 0.088 ± 0.007%); however, FSR remained elevated only in the PB group during the late period (WP, 0.074 ± 0.010%; PB, 0.087 ± 0.003%) (P < 0.05). mTORC1 signaling similarly increased between groups, except for no increase in S6K1 phosphorylation in the WP group at 5 h postexercise (P < 0.05). We conclude that a soy-dairy PB ingested following exercise is capable of prolonging blood aminoacidemia, mTORC1 signaling, and protein synthesis in human skeletal muscle and is an effective postexercise nutritional supplement.


Assuntos
Proteínas Alimentares/administração & dosagem , Exercício Físico/fisiologia , Proteínas Musculares/biossíntese , Treinamento Resistido , Adolescente , Adulto , Aminoácidos de Cadeia Ramificada/sangue , Caseínas/administração & dosagem , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Marcação por Isótopo , Cinética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas do Leite/administração & dosagem , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Proteínas de Soja/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Proteínas do Soro do Leite , Adulto Jovem
8.
Curr Aging Sci ; 4(3): 260-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21529326

RESUMO

The loss of lean muscle mass occurring with advancing age is termed sarcopenia. This condition often leads to a concomitant loss of strength, increased frailty and risk of falls and an overall loss of functional independence in the elderly. Muscle protein metabolism is a dynamic process characterized by the balance between the synthesis and breakdown of muscle proteins. A disturbance of this equilibrium can lead to the loss of muscle mass, and a perturbation of muscle protein turnover with aging has been proposed to play a role in the development of sarcopenia. However, basal muscle protein synthesis and breakdown rates do not differ between young and old adults, which has led to the hypothesis that older adults are resistant to anabolic stimuli. In support of this hypothesis, older adults have either no response or a blunted response to nutrients, insulin and resistance exercise, and this anabolic resistance is likely a key factor in the loss of skeletal muscle mass with aging. Recent studies have investigated potential interventions to overcome this anabolic resistance. In particular, combining resistance exercise with essential amino acid supplementation restores the muscle protein anabolic response in older men. The novel rehabilitation technique of performing light resistance exercise during blood flow restriction was also successful in overcoming the anabolic resistance to exercise. Future research is needed to determine whether these novel interventions will be successful in preventing sarcopenia and improving muscle strength and function in older adults.


Assuntos
Envelhecimento/metabolismo , Contração Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Sarcopenia/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Aminoácidos/administração & dosagem , Suplementos Nutricionais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Estado Nutricional , Treinamento Resistido , Sarcopenia/patologia , Sarcopenia/fisiopatologia , Sarcopenia/prevenção & controle
9.
Med Sci Sports Exerc ; 43(12): 2249-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21606874

RESUMO

In this review, we discuss recent research in the field of human skeletal muscle protein metabolism characterizing the acute regulation of mammalian target of rapamycin complex (mTORC) 1 signaling and muscle protein synthesis (MPS) by exercise, amino acid nutrition, and aging. Resistance exercise performed in the fasted state stimulates mixed MPS within 1 h after exercise, which can remain elevated for 48 h. We demonstrate that the activation of mTORC1 signaling (and subsequently enhanced translation initiation) is required for the contraction-induced increase in MPS. In comparison, low-intensity blood flow restriction (BFR) exercise stimulates MPS and mTORC1 signaling to an extent similar to traditional, high-intensity resistance exercise. We also show that mTORC1 signaling is required for the essential amino acid (EAA)-induced increase in MPS. Ingestion of EAAs (or protein) shortly after resistance exercise enhances MPS and mTORC1 signaling compared with resistance exercise or EAAs alone. In older adults, the ability of the skeletal muscle to respond to anabolic stimuli is impaired. For example, in response to an acute bout of resistance exercise, older adults are less able to activate mTORC1 or increase MPS during the first 24 h of postexercise recovery. However, BFR exercise can overcome this impairment. Aging is not associated with a reduced response to EAAs provided the EAA content is sufficient. Therefore, we propose that exercise combined with EAA should be effective not only in improving muscle repair and growth in response to training in athletes, but that strategies such as EAA combined with resistance exercise (or BFR exercise) may be very useful as a countermeasure for sarcopenia and other clinical conditions associated with muscle wasting.


Assuntos
Envelhecimento/metabolismo , Aminoácidos/metabolismo , Exercício Físico , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Suplementos Nutricionais , Feminino , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Atrofia Muscular/terapia , Serina-Treonina Quinases TOR/metabolismo
10.
J Nutr ; 139(12): 2279-84, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19828686

RESUMO

Essential amino acids (EAA) stimulate muscle protein synthesis in humans. However, little is known about whether microRNAs (miRNA) and genes associated with muscle growth are expressed differently following EAA ingestion. Our purpose in this experiment was to determine whether miRNA and growth-related mRNA expressed in skeletal muscle are up- or downregulated in humans following the ingestion of EAA. We hypothesized that EAA would alter miRNA expression in skeletal muscle as well as select growth-related genes. Muscle biopsies were obtained from the vastus lateralis of 7 young adult participants (3 male, 4 female) before and 3 h after ingesting 10 g of EAA. Muscle samples were analyzed for muscle miRNA (miR-499, -208b, -23a, -1, -133a, and -206) and muscle-growth related genes [MyoD1, myogenin, myostatin, myocyte enhancer factor C (MEF2C), follistatin-like-1 (FSTL1), histone deacytylase 4, and serum response factor mRNA] before and after EAA ingestion using real-time PCR. Following EAA ingestion, miR-499, -208b, -23a, -1, and pri-miR-206 expression increased (P < 0.05). The muscle-growth genes MyoD1 and FSTL1 mRNA expression increased (P < 0.05), and myostatin and MEF2C mRNA were downregulated following EAA ingestion (P < 0.05). We conclude that miRNA and growth-related genes expressed in skeletal muscle are rapidly altered within hours following EAA ingestion. Further work is needed to determine whether these miRNA are post-transcriptional regulators of growth-related genes following an anabolic stimulus.


Assuntos
Aminoácidos Essenciais/farmacologia , Proteínas de Domínio MADS/genética , MicroRNAs/genética , Músculo Esquelético/fisiologia , Fatores de Regulação Miogênica/genética , Miostatina/genética , RNA Mensageiro/genética , Adulto , Aminoácidos/sangue , Glicemia/metabolismo , Primers do DNA , DNA Complementar/genética , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Insulina/sangue , Fatores de Transcrição MEF2 , Masculino , MicroRNAs/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Reação em Cadeia da Polimerase , RNA Mensageiro/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA