Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 7377, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743517

RESUMO

The receptor tyrosine kinase, erythropoietin-producing hepatocellular A4 (EphA4), was recently identified as a molecular target for Alzheimer's disease (AD). We found that blockade of the interaction of the receptor and its ligands, ephrins, alleviates the disease phenotype in an AD transgenic mouse model, suggesting that targeting EphA4 is a potential approach for developing AD interventions. In this study, we identified five FDA-approved drugs-ergoloid, cyproheptadine, nilotinib, abiraterone, and retapamulin-as potential inhibitors of EphA4 by using an integrated approach combining virtual screening with biochemical and cellular assays. We initially screened a database of FDA-approved drugs using molecular docking against the ligand-binding domain of EphA4. Then, we selected 22 candidate drugs and examined their inhibitory activity towards EphA4. Among them, five drugs inhibited EphA4 clustering induced by ephrin-A in cultured primary neurons. Specifically, nilotinib, a kinase inhibitor, inhibited the binding of EphA4 and ephrin-A at micromolar scale in a dosage-dependent manner. Furthermore, nilotinib inhibited the activation of EphA4 and EphA4-dependent growth cone collapse in cultured hippocampal neurons, demonstrating that the drug exhibits EphA4 inhibitory activity in cellular context. As demonstrated in our combined computational and experimental approaches, repurposing of FDA-approved drugs to inhibit EphA4 may provide an alternative fast-track approach for identifying and developing new treatments for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Receptor EphA4/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Androstenos/metabolismo , Androstenos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ciproeptadina/metabolismo , Ciproeptadina/farmacologia , Modelos Animais de Doenças , Diterpenos/metabolismo , Diterpenos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ligantes , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Pirimidinas/metabolismo , Receptor EphA4/metabolismo
2.
J Neurosci ; 30(43): 14366-70, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980593

RESUMO

Precise regulation of cyclin-dependent kinase 5 (Cdk5), a member of the cyclin-dependent kinase family, is critical for proper neuronal development and functions. Cdk5 is activated through its association with the neuron-specific activator p35 or p39. Nonetheless, how its kinase activity is regulated in neurons is not well understood. In this study, we found that Cdk5 activity is regulated by S-nitrosylation, a post-translational modification of protein that affects a plethora of neuronal functions. S-nitrosylation of Cdk5 occurs at Cys83, which is one of the critical amino acids within the ATP-binding pocket of the kinase. Upon S-nitrosylation, Cdk5 exhibits reduced kinase activity, whereas mutation of Cys83 to Ala on Cdk5 renders the kinase refractory to such inhibition. Importantly, S-nitrosylated Cdk5 can be detected in the mouse brain, and blocking the S-nitrosylation of Cdk5 in cultured hippocampal neurons enhances dendritic growth and branching. Together, our findings reveal an important role of S-nitrosylation in regulating Cdk5 kinase activity and dendrite growth in neurons during development.


Assuntos
Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Biotina , Química Encefálica/fisiologia , Células Cultivadas , Cisteína/fisiologia , DNA Complementar/genética , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Humanos , Camundongos , Compostos Nitrosos/química , Proteínas Recombinantes de Fusão , Transfecção
3.
J Biol Chem ; 281(15): 9852-8, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16461345

RESUMO

Pctaire1, a member of the cyclin-dependent kinase (Cdk)-related family, has recently been shown to be phosphorylated and regulated by Cdk5/p35. Although Pctaire1 is expressed in both neuronal and non-neuronal cells, its precise functions remain elusive. We performed a yeast two-hybrid screen to identify proteins that interact with Pctaire1. N-Ethylmaleimide-sensitive fusion protein (NSF), a crucial factor in vesicular transport and membrane fusion, was identified as one of the Pctaire1 interacting proteins. We demonstrate that the D2 domain of NSF, which is required for the oligomerization of NSF subunits, binds directly to and is phosphorylated by Pctaire1 on serine 569. Mutation of this phosphorylation site on NSF (S569A) augments its ability to oligomerize. Moreover, inhibition of Pctaire1 activity by transfecting its kinase-dead (KD) mutant into COS-7 cells enhances the self-association of NSF. Interestingly, Pctaire1 associates with NSF and synaptic vesicle-associated proteins in adult rat brain. To investigate whether Pctaire1 phosphorylation of NSF is involved in regulation of Ca(2+)-dependent exocytosis, we examined the effect of expressing Pctaire1 or NSF phosphorylation mutants on the regulated secretion of growth hormone from PC12 cells. Interestingly, expression of either Pctaire1-KD or NSF-S569A in PC12 cells significantly increases high K(+)-stimulated growth hormone release. Taken together, our findings provide the first demonstration that Pctaire1 phosphorylation of NSF regulates the ability of NSF to oligomerize, implicating an unexpected role of this kinase in modulating exocytosis. These findings open a new avenue of research in studying the functional roles of Pctaire1 in the nervous system.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , Proteínas Sensíveis a N-Etilmaleimida/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Western Blotting , Células COS , Cálcio/metabolismo , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Clonagem Molecular , Quinases Ciclina-Dependentes/química , DNA Complementar/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Exocitose , Humanos , Imunoprecipitação , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Células PC12 , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Ratos , Serina/química , Transfecção , Técnicas do Sistema de Duplo-Híbrido , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA