Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PeerJ ; 12: e16985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436009

RESUMO

Tillering/branching pattern plays a significant role in determining the structure and diversity of grass, and trimming has been found to induce tillering in turfgrass. Recently, it has been reported that hydrogen peroxide (H2O2) regulates axillary bud development. However, the role of H2O2 in trimming-induced tillering in bermudagrass, a kind of turfgrass, remains unclear. Our study unveils the significant impact of trimming on promoting the sprouting and growth of tiller buds in stolon nodes, along with an increase in the number of tillers in the main stem. This effect is accompanied by spatial-temporal changes in cytokinin and sucrose content, as well as relevant gene expression in axillary buds. In addition, the partial trimming of new-born tillers results in an increase in sucrose and starch reserves in their leaves, which can be attributed to the enhanced photosynthesis capacity. Importantly, trimming promotes a rapid H2O2 burst in the leaves of new-born tillers and axillary stolon buds. Furthermore, exogenous application of H2O2 significantly increases the number of tillers after trimming by affecting the expression of cytokinin-related genes, bolstering photosynthesis potential, energy reserves and antioxidant enzyme activity. Taken together, these results indicate that both endogenous production and exogenous addition of H2O2 enhance the inductive effects of trimming on the tillering process in bermudagrass, thus helping boost energy supply and maintain the redox state in newly formed tillers.


Assuntos
Cynodon , Peróxido de Hidrogênio , Oxirredução , Antioxidantes , Citocininas , Sacarose
2.
PeerJ ; 10: e14326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411836

RESUMO

Day length is a very critical environmental factor affecting plant growth and development. The extension of light application time has been shown to promote flowering in the long-day plant and to shorten breeding time in some crops. However, previous research on the regulation of bermudagrass flowering by light application time is scarce. Therefore, this study investigated the effect of day length on the growth and flowering of bermudagrass by prolonging the light application time in a controlled greenhouse. Three different light application times were set up in the experiment: 22/2 h (22 hours light/2 hours dark), 18/6 h (18 hours light/6 hours dark), 14/10 h (14 hours light/10 hours dark). Results showed that extending the light application time not only promoted the growth of bermudagrass (plant height, fresh weight, dry weight) but also its nutrient uptake (nitrogen (N) and phosphorous (P) content). In addition, daily light integrals were different when flowering under different light application times. Most importantly, under the 22/2 h condition, flowering time was successfully reduced to 44 days for common bermudagrass (Cynodon dactylon [L.] pers) genotype A12359 and 36 days for African bermudagrass (Cynodon transvaalensis Burtt-Davy) genotype ABD11. This study demonstrated a successful method of bermudagrass flowering earlier than usual time by manipulating light application time which may provide useful insights for bermudagrass breeding.


Assuntos
Cynodon , Melhoramento Vegetal , Cynodon/genética , Genótipo
3.
Physiol Plant ; 174(3): e13710, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35567521

RESUMO

Bermudagrass is one of the most extensively used warm-season grasses. It is widely used in landscaping, stadium construction and soil remediation due to its excellent regeneration, trampling and stress tolerances. However, studies on its regulatory mechanism and variety improvement by genetic engineering are still at a standstill, owing to its genetic variability and intrinsic limits linked with some resistance to Agrobacterium infection. In this study, we established a higher efficient Agrobacterium-mediated transformation via screening for vital embryogenic callus and improving infection efficiency. The superior callus was light yellow, hard granular and compact, determined with a differentiation rate of more than 95%. The optimized infestation courses by gentle shaking, vacuuming and sonicating were used. The infested calluses were co-cultured for 3 days, followed by desiccation treatments for 1 day to get higher infection efficiency. Then the CdHEMA1 gene, essential for chlorophyll biosynthesis, was cloned and transferred into bermudagrass to validate the aforementioned optimization procedures integrally. Molecular-level analyses indicated that the CdHEMA1 gene had successfully integrated and was greatly increased in transgenic seedlings. Results of the photosynthetic capacity assessment showed that CdHEMA1 overexpression may considerably enhance the contents of photosynthetic pigments, OJIP curve and reaction center density (RC/CSo) to absorb (ABS/CSo, ABS/CSM) and capture (TRo/CSo) more light energy, hence improve the performance indices PIABS and PICS compared to the wild type. The successful completion of this project would provide a solid platform for further gene function study and molecular breeding of bermudagrass.


Assuntos
Agrobacterium , Cynodon , Agrobacterium/genética , Cynodon/genética , Fotossíntese/genética , Plantas Geneticamente Modificadas/genética , Poaceae/genética , Plântula/genética , Transformação Genética
4.
Physiol Plant ; 174(2): e13655, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243634

RESUMO

Connected ramets of colonal plants often suffer from different environmental conditions such as light, nutrient, and stress. Colonal Bermudagrass (Cynodon dactylon [L.] Pers.) can form interconnected ramets and this connection facilitates the tolerance to abiotic stress, which is a kind of physiological integration. However, how bermudagrass responds to heterogeneously distributed salt stress needs to be further elucidated. Here, we demonstrated that severance of stolons aggravated the damage of salt-stressed ramets, displaying higher relative electrolytic leakage (EL), lower content of chlorophyll, higher accumulation of Na+ , and serious oxidative damages. This finding implied the positive effects of the physiological integration of bermudagrass on salt tolerance. The unstressed ramets connected with the stressed one were mildly injured, implying the supporting and sacrifice function of the unstressed ramets. Physiological integration did not mediate the translocation of Na+ among ramets, but induced a higher expression of salt overly sensitive (SOS) genes in the stressed ramets, consequently reducing the accumulation of Na+ in leaves and roots. In addition, physiological integration upregulated the genes expression and enzymes activity of catalase (CAT) and peroxidase (POD) in both stressed and unstressed ramets. This granted a stronger antioxidant ability of the whole clonal plants under salt stress. Enhanced Na+ transfer and increased reactive oxygen species (ROS) scavenging are mechanisms that likely contribute to the physiological integration leading to the salt tolerance of bermudagrass.


Assuntos
Cynodon , Estresse Salino , Clorofila/metabolismo , Cynodon/genética , Cynodon/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
5.
J Appl Microbiol ; 132(1): 483-494, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34153147

RESUMO

AIM: Potassium (K) is a key determinant for plant development and productivity. However, more than 90% of K in the soil exists in an insoluble form. K-solubilizing microbes play an important role in the transformation of insoluble K. Thus, the objective of this study was to evaluate K-dissolving ability of Aspergillus aculeatus (F) and growth-promoting properties in perennial ryegrass. METHODS AND RESULTS: Perennial ryegrass inoculated with A. aculeatus exhibited enhanced soluble K accompanied with higher growth rate and turf quality, compared with the noninoculated regimen. In addition, A. aculeatus also played a primary role in increasing chlorophyll content and photosynthetic capacity of the plant exposed to LK+F (K-feldspar plus A. aculeatus) treatment, compared with the CK (control, no K-feldspar and A. aculeatus), F (only A. aculeatus) and LK (only K-feldspar) groups. Furthermore, the antioxidase activities (CAT and POD) were significantly increased while the oxidative damage (EL and MDA) was dramatically decreased in the LK+F group compared to the LK (K-feldspar) group. Finally, in perennial ryegrass leaves, the genes expression levels of HAK8, HAK12 and HKT18 were obviously elevated in the LK+F group, compared to the CK, F and LK groups. CONCLUSION: We concluded that A. aculeatus could solubilize K from bound form and be considered as K-solubilizing biofertilizer through supplementing K in soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Aspergillusaculeatus has the potential to be used as a biofertilizer in sustainable agriculture.


Assuntos
Lolium , Aspergillus/genética , Fotossíntese , Potássio
6.
BMC Plant Biol ; 21(1): 175, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838660

RESUMO

BACKGROUND: Despite its good salt-tolerance level, key genes and pathways involved with temporal salt response of common bermudagrass (Cynodon dactylon (L.) Pers.) have not been explored. Therefore, in this study, to understand the underlying regulatory mechanism following the different period of salt exposure, a comprehensive transcriptome analysis of the bermudagrass roots was conducted. RESULTS: The transcripts regulated after 1 h, 6 h, or 24 h of hydroponic exposure to 200 mM NaCl in the roots of bermudagrass were investigated. Dataset series analysis revealed 16 distinct temporal salt-responsive expression profiles. Enrichment analysis identified potentially important salt responsive genes belonging to specific categories, such as hormonal metabolism, secondary metabolism, misc., cell wall, transcription factors and genes encoded a series of transporters. Weighted gene co-expression network analysis (WGCNA) revealed that lavenderblush2 and brown4 modules were significantly positively correlated with the proline content and peroxidase activity and hub genes within these two modules were further determined. Besides, after 1 h of salt treatment, genes belonging to categories such as signalling receptor kinase, transcription factors, tetrapyrrole synthesis and lipid metabolism were immediately and exclusively up-enriched compared to the subsequent time points, which indicated fast-acting and immediate physiological responses. Genes involved in secondary metabolite biosynthesis such as simple phenols, glucosinolates, isoflavones and tocopherol biosynthesis were exclusively up-regulated after 24 h of salt treatment, suggesting a slightly slower reaction of metabolic adjustment. CONCLUSION: Here, we revealed salt-responsive genes belonging to categories that were commonly or differentially expressed in short-term salt stress, suggesting possible adaptive salt response mechanisms in roots. Also, the distinctive salt-response pathways and potential salt-tolerant hub genes investigated can provide useful future references to explore the molecular mechanisms of bermudagrass.


Assuntos
Cynodon/fisiologia , Genes de Plantas , Raízes de Plantas/fisiologia , Estresse Salino/genética , Transdução de Sinais , Transcriptoma/fisiologia , Cynodon/genética , Perfilação da Expressão Gênica
7.
Commun Biol ; 3(1): 358, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647329

RESUMO

Bermudagrass (Cynodon dactylon Pers.) is an important warm-season perennial used extensively for turf, forage, soil conservation and remediation worldwide. However, limited genomic information has hindered the application of molecular tools towards understanding genome evolution and in breeding new cultivars. We genotype a first-generation selfed population derived from the tetraploid (4x = 36) 'A12359' using genotyping-by-sequencing. A high-density genetic map of 18 linkage groups (LGs) is constructed with 3,544 markers. Comparative genomic analyses reveal that each of nine homeologous LG pairs of C. dactylon corresponds to one of the first nine chromosomes of Oropetium thomaeum. Two nested paleo-ancestor chromosome fusions (ρ6-ρ9-ρ6, ρ2-ρ10-ρ2) may have resulted in a 12-to-10 chromosome reduction. A segmental dissemination of the paleo-chromosome ρ12 (ρ1-ρ12-ρ1, ρ6-ρ12-ρ6) leads to the 10-to-9 chromosome reduction in C. dactylon genome. The genetic map will assist in an ongoing whole genome sequence assembly and facilitate marker-assisted selection (MAS) in developing new cultivars.


Assuntos
Cromossomos de Plantas/genética , Cynodon/genética , Evolução Molecular , Ligação Genética , Genoma de Planta , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Cynodon/classificação , Cynodon/crescimento & desenvolvimento
8.
Plant Sci ; 294: 110432, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32234227

RESUMO

Cold stress is one of the major environmental factors that limit growth and utilization of bermudagrass [Cynodon dactylon (L.) Pers], a prominent warm-season turfgrass. However, the molecular mechanism of cold response in bermudagrass remains largely unknown. In this study, we characterized a cold-responsive ERF (ethylene responsive factor) transcription factor, CdERF1, from bermudagrass. CdERF1 expression was induced by cold, drought and salinity stresses. The CdERF1 protein was nucleus-localized and encompassed transcriptional activation activity. Transgenic Arabidopsis plants overexpressing CdERF1 showed enhanced cold tolerance, whereas CdERF1-underexpressing bermudagrass plants via virus induced gene silencing (VIGS) method exhibited reduced cold resistance compared with control, respectively. Under cold stress, electrolyte leakage (EL), malondialdehyde (MDA), H2O2 and O2- contents were reduced, while the activities of SOD and POD were elevated in transgenic Arabidopsis. By contrast, these above physiological indicators in CdERF1-underexpressing bermudagrass exhibited the opposite trend. To further explore the possible molecular mechanism of bermudagrass cold stress response, the RNA-Seq analyses were performed. The result indicated that overexpression of CdERF1 activated a subset of stress-related genes in transgenic Arabidopsis, such as CBF2, pEARLI1 (lipid transfer protein), PER71 (peroxidase) and LTP (lipid transfer protein). Interestingly, under-expression of CdERF1 suppressed the transcription of many genes in CdERF1-underexpressing bermudagrass, also including pEARLI1 (lipid transfer protein) and PER70 (peroxidase). All these results revealed that CdERF1 positively regulates plant cold response probably by activating stress-related genes, PODs, CBF2 and LTPs. This study also suggests that CdERF1 may be an ideal candidate in the effort to improve cold tolerance of bermudagrass in the further molecular breeding.


Assuntos
Proteínas de Transporte/metabolismo , Cynodon/metabolismo , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Cynodon/genética , Inativação Gênica/fisiologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Plant Genome ; 10(1)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28464062

RESUMO

Common bermudagrass has been widely used as a major warm-season turf, forage, and soil stabilization grass in the southern United States. However, codominant marker development, linkage, and quantitative trait loci (QTL) mapping resources are limited in the important taxon. Accordingly, the objectives of this study were to develop simple sequence repeat (SSR) markers, construct a genetic map, and identify genomic regions associated with establishment rate. Five genomic SSR libraries were constructed, sequenced, and used in the development of 1003 validated SSR primer pairs (PPs). A linkage map was constructed using a first-generation selfed population derived from a genotype A12359 (2 = 4 = 36). A total of 249 polymorphic SSR PPs were mapped to 18 linkage groups (LGs). The total length of the map is 1094.7 cM, with an average marker interval of 4.3 cM. Ninety-eight out of 252 mapped loci (39%) were found to be distorted from the Mendelian 1:2:1 segregation ratio. Among the other 154 nondistorted loci, 88 coupling vs. 66 repulsion linkage phases were observed to confirm the allopolyploid origin of the parent. Ground coverage (GCR) phenotypic data in the establishment stage were collected in two replicated field trials. Quantitative trait loci mapping identified five genomic regions significantly related to the trait. The findings of this study provide valuable genetic tools and resources for genomic research, genetic improvement, and breeding new cultivars in the species.


Assuntos
Mapeamento Cromossômico , Cynodon/genética , Genes de Plantas , Marcadores Genéticos , Locos de Características Quantitativas , Segregação de Cromossomos , Cromossomos de Plantas , Biblioteca Genômica , Repetições de Microssatélites , Fenótipo
10.
Plant Physiol Biochem ; 114: 38-50, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28273510

RESUMO

Plants' tolerance to heavy metal stress may be induced by the exploitation of microbes. The objectives of this study were to investigate the effect of cadmium (Cd)-resistant fungus, Aspergillus aculeatus, on tolerance to Cd and alteration of metabolites in bermudagrass under Cd stress, and identify the predominant metabolites associated with Cd tolerance. Two genotypes of bermudagrass with contrasting Cd tolerance (Cd-sensitive 'WB92' and Cd-tolerant 'WB242') were exposed to 0, 50, 150 and 250 mg kg-1 Cd for 21 days. Physiological responses of bermudagrass to Cd stress were evaluated based on the relative growth rate (RGR) and normalized relative transpiration rate (NRT). Plants inoculated with A. aculeatus exhibited higher RGR and NRT under Cd stress than those of non-inoculated plants, regardless of genotypes. A total of 32 Cd-responsive metabolites in leaves and 21 in roots were identified in the two genotypes, including organic acids, amino acids, sugars, and fatty acids and others. Interestingly, under Cd stress, the leaves of inoculated 'WB92' accumulated less citric acid, aspartic acid, glutamic acid, sucrose, galactose, but more sorbose and glucose, while inoculated 'WB242' leaves had less citric acid, malic acid, sucrose, sorbose, but more fructose and glucose, compared to non-inoculated plants. In 'WB92' roots, the A. aculeatus reduced mannose content, but increased trehalose and citric acid content, while in 'WB242', it decreased sucrose, but enhanced citric acid content, compared to Cd regime. The results of this study suggest that A. aculeatus may induce accumulation of different metabolites associated with Cd tolerance in bermudagrass.


Assuntos
Aspergillus/fisiologia , Cádmio/toxicidade , Cynodon/efeitos dos fármacos , Cynodon/microbiologia , Aspergillus/efeitos dos fármacos , Cádmio/farmacocinética , Análise por Conglomerados , Cynodon/metabolismo , Inativação Metabólica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Análise de Componente Principal , Estresse Fisiológico/efeitos dos fármacos
11.
Mol Plant Microbe Interact ; 30(3): 245-254, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28134574

RESUMO

There is considerable evidence that plant abiotic-stress tolerance can be evoked by the exploitation of a globally abundant microbe. A. aculeatus, which was initially isolated from the rhizosphere of bermudagrass, has been shown to increase heavy metal tolerance in turfgrasses. Here, we report on the potential of A. aculeatus to induce tolerance to salt stress in bermudagrass. Physiological markers for salt stress, such as plant growth rate, lipid peroxidation, photosynthesis, and ionic homeostasis were assessed. Results indicated that strain A. aculeatus produced indole-3-acetic acid (IAA) and siderophores and exhibited a greater capacity for Na+ absorption under salt stress. The plant inoculation by A. aculeatus increased plant growth and attenuated the NaCl-induced lipid peroxidation in roots and leaves of bermudagrass. The fungus significantly elevated the amount of IAA and glutathione and slightly enhanced photosynthetic efficiency of salt-treated bermudagrass. Tissues of inoculated plants had significantly increased concentrations of K+ but lower Na+ concentrations than those of uninoculated regimes. It appears that the role of A. aculeatus in alleviating bermudagrass salt stress is partly to produce IAA, to increase the activity of antioxidases, to absorb Na+ by fungal hyphae, and to prevent the plant from ionic homeostasis disruption.


Assuntos
Aspergillus/fisiologia , Cynodon/microbiologia , Cynodon/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Aspergillus/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Clorofila A , Cynodon/efeitos dos fármacos , Cynodon/crescimento & desenvolvimento , Fluorescência , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Íons , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento
12.
Ecotoxicology ; 25(8): 1445-1457, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27443677

RESUMO

There is widespread distribution of salinized lands in northern China. Harnessing such land is essential to environmental health. Bermudagrass [Cynodon dactylon (L.) Pers.] has the potential to improve the salinized lands. However, low temperature remarkably limits the growth of bermudagrass in winter. Currently, there is no information about the interaction of cold and salt in this plant. Hence, the objectives of this study were to figure out the effects of combined cold and salinity stress on bermudagrass. In this study, 4 °C and 200 mM salt solution was used as cold and salt treatments respectively while 4 °C along with 200 mM salt solution were applied as combined stress. After 5 days treatment, bermudagrass displayed a dramatic decline in the turf quality and chlorophyll content, but higher malonaldehyde, electrolyte leakage, hydrogen peroxide content, antioxidant enzyme activity in the combined stress regime as compared to cold or salt treated alone. Analysis of chlorophyll a revealed that the combined stress aggravated stress-induced inhibition of photosystem II. In addition, the expressions of stress-related genes were up-regulated with a lower expression level when cold and salt applied together. In summary, the grass exposed to combined stress presented a relatively lower stress tolerance and suffered a more severe damage than grass grown in the other regimes. These findings are crucial for elucidating the molecular mechanisms of cold and salt combined stress in bermudagrass, and provide information for breeding programs to select and develop bermudagrass cultivars that are suitable for improvement of the northern China salinized land.


Assuntos
Temperatura Baixa , Cynodon/fisiologia , Fotossíntese/fisiologia , Estresse Fisiológico , China , Clorofila/metabolismo , Clorofila A , Complexo de Proteína do Fotossistema II/fisiologia , Tolerância ao Sal , Cloreto de Sódio
13.
Plant Physiol Biochem ; 100: 94-104, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26807934

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) has been reported to participate in plant development and abiotic stress responses. The main objective of this study was to investigate the role of melatonin in the cold-sensitive (S) and the cold-tolerant (T) bermudagrass genotypes' response to cold stress. The genotypes were treated with 100 µM melatonin and exposed to 4 °C temperature for 3 days. In both genotypes, cold stress increased the endogenous melatonin levels, and more prominently in T than S. Physiological responses indicated that exogenous melatonin triggered antioxidant activities in both genotypes, while it alleviated cell damage in the T genotype response to cold stress. Melatonin treatment under cold stress increased fluorescence curve levels for both genotypes, and higher in T than S genotypes. In both genotypes, the alterations in photosynthetic fluorescence parameters after melatonin treatment highlighted the participation of melatonin in improving photosystem response to cold stress, particularly for the cold-tolerant genotype. The metabolic analyses revealed the alterations of 44 cold-responsive metabolites in the two genotypes, mainly including carbohydrates, organic acids and amino acids. After exogenous melatonin treatment under cold condition, there was high accumulation of metabolites in the cold-tolerant regimes than their cold-sensitive counterparts. Collectively, the present study revealed differential modulations of melatonin between the cold-sensitive and the cold-tolerant genotypes in response to cold stress. This was mainly by impacting antioxidant system, photosystem II, as well as metabolic homeostasis.


Assuntos
Resposta ao Choque Frio/efeitos dos fármacos , Cynodon/metabolismo , Genótipo , Melatonina/farmacologia , Fotossíntese/efeitos dos fármacos , Resposta ao Choque Frio/genética , Cynodon/genética , Fotossíntese/genética
14.
Photosynth Res ; 128(1): 59-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26497139

RESUMO

The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system, photosystem II, as well as the CBF transcriptional regulatory cascade.


Assuntos
Antioxidantes/metabolismo , Resposta ao Choque Frio/fisiologia , Cynodon/metabolismo , Etilenos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Aminoácidos Cíclicos/metabolismo , Aminoácidos Cíclicos/farmacologia , Ascorbato Peroxidases/metabolismo , Membrana Celular/metabolismo , Clorofila/metabolismo , Clorofila A , Temperatura Baixa , Cynodon/efeitos dos fármacos , Cynodon/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo
15.
BMC Plant Biol ; 15: 216, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26362029

RESUMO

BACKGROUND: Cold stress is regarded as a key factor limiting widespread use for bermudagrass (Cynodon dactylon). Therefore, to improve cold tolerance for bermudagrass, it is urgent to understand molecular mechanisms of bermudagrass response to cold stress. However, our knowledge about the molecular responses of this species to cold stress is largely unknown. The objective of this study was to characterize the transcriptomic response to low temperature in bermudagrass by using RNA-Seq platform. RESULTS: Ten cDNA libraries were generated from RNA samples of leaves from five different treatments in the cold-resistant (R) and the cold-sensitive (S) genotypes, including 4 °C cold acclimation (CA) for 24 h and 48 h, freezing (-5 °C) treatments for 4 h with or without prior CA, and controls. When subjected to cold acclimation, global gene expressions were initiated more quickly in the R genotype than those in the S genotype. The R genotype activated gene expression more effectively in response to freezing temperature after 48 h CA than the S genotype. The differentially expressed genes were identified as low temperature sensing and signaling-related genes, functional proteins and transcription factors, many of which were specifically or predominantly expressed in the R genotype under cold treatments, implying that these genes play important roles in the enhanced cold hardiness of bermudagrass. KEGG pathway enrichment analysis for DEGs revealed that photosynthesis, nitrogen metabolism and carbon fixation pathways play key roles in bermudagrass response to cold stress. CONCLUSIONS: The results of this study may contribute to our understanding the molecular mechanism underlying the responses of bermudagrass to cold stress, and also provide important clues for further study and in-depth characterization of cold-resistance breeding candidate genes in bermudagrass.


Assuntos
Temperatura Baixa , Cynodon/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Adaptação Fisiológica , Cynodon/genética , Genótipo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Transcriptoma
16.
BMC Genomics ; 16: 575, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238595

RESUMO

BACKGROUND: Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RESULTS: RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. CONCLUSIONS: RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.


Assuntos
Cynodon/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Tolerância ao Sal/genética , Transcriptoma , Parede Celular/genética , Parede Celular/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Cynodon/metabolismo , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
PLoS One ; 10(7): e0132991, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26177459

RESUMO

Bermudagrass is widely utilized in parks, lawns, and golf courses. However, cold is a key factor limiting resource use in bermudagrass. Therefore, it is meaningful to study the mechanism of bermudagrass response to cold. Nitric oxide (NO) is a crucial signal molecule with multiple biological functions. Thus, the objective of this study was to investigate whether NO play roles in bermudagrass response to cold. Sodium nitroprusside (SNP) was used as NO donor, while 2-phenyl-4,4,5,5-tetramentylimidazoline-l-oxyl-3-xide (PTIO) plus NG-nitro-L-arginine methyl ester (L-NAME) were applied as NO inhibitor. Wild bermudagrass was subjected to 4 °C in a growth chamber under different treatments (Control, SNP, PTIO + L-NAME). The results indicated lower levels of malondialdehyde (MDA) content and electrolyte leakage (EL), higher value for chlorophyll content, superoxide dismutase (SOD) and peroxidase (POD) activities after SNP treatment than that of PTIO plus L-NAME treatments under cold stress. Analysis of Chlorophyll (Chl) a fluorescence transient displayed that the OJIP transient curve was higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. The values of photosynthetic fluorescence parameters were higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. Expression of cold-responsive genes was altered under cold stress after treated with SNP or PTIO plus L-NAME. In summary, our findings indicated that, as an important strategy to protect bermudagrass against cold stress, NO could maintain the stability of cell membrane, up-regulate the antioxidant enzymes activities, recover process of photosystem II (PSII) and induce the expression of cold-responsive genes.


Assuntos
Resposta ao Choque Frio , Cynodon/fisiologia , Óxido Nítrico/fisiologia , Adaptação Fisiológica , Membrana Celular/metabolismo , Clorofila/metabolismo , Cynodon/citologia , Cynodon/efeitos dos fármacos , Metabolismo Energético , Expressão Gênica , Peroxidação de Lipídeos , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Nitroprussiato/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Transdução de Sinais
18.
PLoS One ; 9(12): e115279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25545719

RESUMO

Metabolic responses to cadmium (Cd) may be associated with variations in Cd tolerance in plants. The objectives of this study were to examine changes in metabolic profiles in bermudagrass in response to Cd stress and to identify predominant metabolites associated with differential Cd tolerance using gas chromatography-mass spectrometry. Two genotypes of bermudagrass with contrasting Cd tolerance were exposed to 0 and 1.5 mM CdSO4 for 14 days in hydroponics. Physiological responses to Cd were evaluated by determining turf quality, growth rate, chlorophyll content and normalized relative transpiration. All these parameters exhibited higher tolerance in WB242 than in WB144. Cd treated WB144 transported more Cd to the shoot than in WB242. The metabolite analysis of leaf polar extracts revealed 39 Cd responsive metabolites in both genotypes, mainly consisting of amino acids, organic acids, sugars, fatty acids and others. A difference in the metabolic profiles was observed between the two bermudagrass genotypes exposed to Cd stress. Seven amino acids (norvaline, glycine, proline, serine, threonine, glutamic acid and gulonic acid), four organic acids (glyceric acid, oxoglutaric acid, citric acid and malic acid,) and three sugars (xylulose, galactose and talose) accumulated more in WB242 than WB144. However, compared to the control, WB144 accumulated higher quantities of sugars than WB242 in the Cd regime. The differential accumulation of these metabolites could be associated with the differential Cd tolerance in bermudagrass.


Assuntos
Cádmio/toxicidade , Cynodon/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Aminoácidos/metabolismo , Cynodon/genética , Cynodon/crescimento & desenvolvimento , Cynodon/metabolismo , Genótipo , Transpiração Vegetal/efeitos dos fármacos , Estresse Fisiológico
19.
Chemosphere ; 117: 786-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25461949

RESUMO

Phytoremediation utilizing plants and microbes has been increasingly adopted as a green technology for cleaning up heavy metal polluted soils. Cd polluted soil and native bermudagrass from Liuyang and Zhuzhou in Hunan province of China were collected to investigate microbial diversity and isolate Cd resistant fungi, and then to determine the effect of Cd resistant fungi on Cd tolerance and transportation of bermudagrass. The functional diversity of microorganisms was evaluated using the BIOLOG Eco method. Cd-resistant fungi strain was isolated and identified as Aspergillus aculeatus based on the ribosomal internal transcribed spacer region sequence analysis. Bermudagrass was exposed to control, Cd only, and Cd plus A. aculeatus (Cd + A. aculeatus) with growth matrix (sawdust/sand = 3/1 in volume). Results indicated that Cd + A. aculeatus treated bermudagrass exhibited a higher photosynthetic activity compared to Cd only treated plants. Inoculation of A. aculeatus resulted in a decrease in stem and leaf Cd concentrations, to a greater extent for Cd-sensitive than for Cd-tolerant genotype. However, inoculation of A. aculeatus increased root Cd concentration under Cd stress conditions, significantly elevated soil pH, and decreased soil water-soluble Cd concentration. These results suggested that A. aculeatus might be potentially applied to improve Cd tolerance and to reduce Cd transportation to shoot of bermudagrass.


Assuntos
Aspergillus/fisiologia , Cádmio/metabolismo , Cynodon/efeitos dos fármacos , Cynodon/microbiologia , Microbiologia do Solo , Poluentes do Solo/metabolismo , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Cádmio/toxicidade , Cynodon/crescimento & desenvolvimento , Cynodon/metabolismo , DNA Fúngico/genética , DNA Intergênico/genética , Dados de Sequência Molecular , Fotossíntese , Reação em Cadeia da Polimerase , Distribuição Aleatória , Análise de Sequência de DNA , Poluentes do Solo/toxicidade
20.
Ecotoxicology ; 23(6): 1030-43, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24804624

RESUMO

Cadmium (Cd) is one of the most toxic pollutants that caused severe threats to animal and human health. Bermudagrass is a dominant species in Cd contaminated soils, which can prevent Cd flow and spread. The objectives of this study were to determine the genetic variations in major physiological traits related to Cd tolerance in six populations of Bermudagrass collected from China, and to examine the genetic diversity and relationships among these accessions that vary in Cd tolerance using molecular markers. Plants of 120 accessions (116 natural accessions and 4 commercial cultivars) were exposed to 0 (i.e. control) or 1.5 mM CdSO4·8/3H2O for 3 weeks in hydroponic culture. Turf quality, transpiration rate, chlorophyll content, leaf water content and growth rate showed wide phenotypic variation. The membership function method was used to comprehensively evaluate Cd-tolerance. According to the average subordinate function value, four accessions were classified as the most tolerant genotypes and four accessions as Cd-sensitive genotypes. The trend of Cd tolerance among the six studied populations was as follows: Hunan > South China > North China > Central China > West South China and Xinjiang population. Phylogenetic analysis revealed that the majority of accessions from the same or adjacent regions were clustered into the same groups or subgroups, and the accessions with similar cadmium tolerance displayed a close phylogenetic relationship. Screening genetically diverse germplasm by combining the physiological traits and molecular markers could prove useful in developing Cd-tolerant Bermudagrass for the remediation of mill tailings and heavy metal polluted soils.


Assuntos
Cádmio/metabolismo , Cynodon/genética , Biodegradação Ambiental , Clorofila/metabolismo , Marcadores Genéticos , Variação Genética , Fenótipo , Filogenia , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA