Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theranostics ; 13(2): 483-509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632234

RESUMO

Computed tomography (CT), a diagnostic tool with clinical application, comprehensive coverage, and low cost, is used in hospitals worldwide. However, CT imaging fails to distinguish soft tissues from normal organs and tumors because their mass attenuation coefficients are similar. Various CT contrast agents have been developed in recent years to improve the sensitivity and contrast of imaging. Here, we review the progress of nanomaterial-based CT contrast agents and their applications in image-guided therapy. The CT contrast agents are classified according to their components; gold (Au)-based, bismuth (Bi)-based, lanthanide (Ln)-based, and transition metal (TM)-based nanomaterials are discussed. CT image-guided therapy of diseases, including photothermal therapy (PPT), photodynamic therapy (PDT), chemotherapy, radiotherapy (RT), gas therapy, sonodynamic therapy (SDT), immunotherapy, starvation therapy, gene therapy (GT), and microwave thermal therapy (MWTT), are reviewed. Finally, the perspectives on the CT contrast agents and their biomedical applications are discussed.


Assuntos
Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Meios de Contraste/uso terapêutico , Fototerapia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Nanoestruturas/uso terapêutico , Tomografia Computadorizada por Raios X
2.
Small ; 18(5): e2105160, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821027

RESUMO

Heteroatom interaction of atomically thin nanomaterials enables the improvement of electronic transfer, band structure, and optical properties. Black phosphorus quantum dots (BP QDs) are considered to be candidate diagnostic and/or therapeutic agents due to their innate biocompatibility and exceptional photochemical effects. However, BP QDs are not competitive regarding second near-infrared (NIR-II) window medical diagnosis and X-ray induced phototherapy. Here, an Nd3+ ion coordinated BP QD (BPNd) is synthesized with the aim to sufficiently improve its performances in NIR-II fluorescence imaging and X-ray induced photodynamic therapy, benefitting from the retrievable NIR/X-ray optoelectronic switching effects between BP QD and Nd3+ ion. Given its ultrasmall size and efficient cargo loading capacity, BPNd can easily cross the blood-brain barrier to precisely monitor the growth of glioblastoma through intracranial NIR-II fluorescence imaging and impede its progression by specific X-ray induced, synergistic photodynamic chemotherapy.


Assuntos
Glioblastoma , Pontos Quânticos , Glioblastoma/diagnóstico por imagem , Humanos , Neodímio , Fósforo/química , Pontos Quânticos/química , Raios X
3.
Acta Biomater ; 140: 601-609, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808416

RESUMO

Controllable self-assembly of photonic molecules for precise biomedicine is highly desirable but challenging to prepare multifunctional nano-phototheranostics. Herein, we developed a generic self-assembly approach to design nano-phototheranostics that provides NIR-II fluorescence imaging and phototherapy. We first designed and synthesized two amphiphilic photonic molecules, PEG2000-IR806 and BODIPY. Then, we prepared the co-self-assembled phototheranostic agents, PEG2000-IR806/BODIPY nanoparticles (PIBY NPs). The morphology of the PIBY NPs is controllable by adjusting the ratio of PEG2000-IR806 and BODIPY during self-assembly. The NIR-II fluorescence properties and phototherapy capability of the PIBY NPs were demonstrated in vitro and in vivo. By tuning the ratio of PEG2000-IR806 and BODIPY, the PIBY NPs showed various morphologies (e.g. spherical nanoparticles, nanovesicles and rod-like nanoparticles). The PEG2000-IR806 plays two roles in the co-self-assemblies, one is second near-infrared (NIR-II, 1000-1700 nm) agent, the other is the surfactant for BODIPY encapsulation. The phototherapeutic PIBY NPs all show bright NIR-II fluorescence and effective phototherapeutic (photothermal and photodynamic) properties, which are attributed to IR806 and BODIPY, respectively. The driving force of the self-assembly can be attributed to the electrostatic interaction between NIR806 and BODIPY and their hydrophobicity. The rod-like PIBY NPs (rPIBY NPs) demonstrated a low half inhibitory concentration (IC50) of 3.96 µg/mL on U87MG cells. The NIR-II imaging showed the accumulation of rPIBY NPs in the tumor region. After systemic injection of rPIBY NPs at low dose (0.5 mg/kg), the tumor growth was greatly inhibited upon laser irradiation without noticeable side effects. This study provides a generic self-assembly approach to fabricate NIR-II imaging and phototherapeutic platform for cancer phototheranostics. STATEMENT OF SIGNIFICANCE: Nanophototheranostics providing NIR-II fluorescence imaging and phototherapy are expected to play a critical role in modern precision medicine. Controllable self-assembly of optical molecules for the fabrication of efficient nanophototheranostics is highly desirable but challenging. This work reports for the first time the co-assembly of a NIR-II imaging contrast agent and a phototherapeutic agent to yield nanophototheranostics with various morphologies. The design of molecular co-assembly with complementary optical functions can be a generic method for future the development of phototheranostics.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Nanopartículas/uso terapêutico , Imagem Óptica , Fototerapia , Medicina de Precisão , Nanomedicina Teranóstica/métodos
4.
Angew Chem Int Ed Engl ; 59(49): 22202-22209, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841465

RESUMO

A silver-ion-coupled black phosphorus (BP) vesicle (BP Ve-Ag+ ) with a second near infrared (NIR-II) window photoacoustic (PA) imaging capability was firstly constructed to maximize the potential of BP quantum dot (QD) in deeper bioimaging and diversified therapy. The embedded Ag+ could improve the relatively large band gap of BP QD via intense charge coupling based on theoretical simulation results, subsequently leading to the enhanced optical absorption capability, accompanied with the occurrence of the strong NIR-II PA signal. Guiding by NIR-II PA bioimaging, the hidden Ag+ could be precisely released with the disassembly of Ve during photodynamic therapy process and captured by macrophages located in lesion region for arousing synergistic cancer photodynamic/Ag+ immunotherapy. BP Ve-Ag+ can contrapuntally kill pathogenic bacteria and accelerate wound healing monitored by NIR-II PA imaging.


Assuntos
Antineoplásicos/farmacologia , Fósforo/farmacologia , Técnicas Fotoacústicas , Fotoquimioterapia , Prata/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Morte Celular Imunogênica/efeitos dos fármacos , Morte Celular Imunogênica/imunologia , Raios Infravermelhos , Camundongos , Tamanho da Partícula , Fósforo/química , Pontos Quânticos/química , Células RAW 264.7 , Prata/química , Propriedades de Superfície , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA