Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 124: 155309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237261

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative condition characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Neuroinflammation plays a pivotal role in the pathogenesis of PD, involving the activation of microglia cells, heightened production of proinflammatory cytokines, and perturbations in the composition of the gut microbiota. Rubusoside (Ru), the principal steviol bisglucoside present in Rubus chingii var. suavissimus (S.K.Lee) L.T.Lu (Rosaceae), has been documented for its anti-inflammatory properties in diverse disease models. Nonetheless, there is an imperative need to comprehensively assess and elucidate the protective and anti-inflammatory attributes of Ru concerning PD, as well as to uncover the underlying mechanism involved. OBJECTIVE: The aim of this study is to evaluate the neuroprotective and anti-inflammatory effects of Ru on PD and investigate its potential mechanisms associated with microbes. RESEARCH DESIGN AND METHODS: We pre-treated mice and cell lines with Ru in order to simulate the progression of PD and the neuroinflammatory state. The mouse model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), SN4741 cells were induced by 1-methyl-4-phenylpyridine (mpp+), and BV-2 cells were induced by lipopolysaccharide (LPS). We assessed the impact of Ru on motor function, neuroinflammation, neuron apoptosis, the composition of gut microbes, and their metabolites. RESULTS: Ru treatment reduces the release of pro-inflammatory mediators by inhibiting microglia activation. It also prevents neuronal apoptosis, thereby safeguarding dopaminergic neurons and ameliorating motor dysfunction. Furthermore, it induces alterations in the fecal microbiota composition and metabolites profile in PD mice. In vitro experiments have demonstrated that Ru inhibits neuronal apoptosis in SN4741 cells induced by mpp+, suppresses the production of pro-inflammatory mediators, and activates the c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (p38 MAPK), and nuclear factor kappa-B (NF-κB) signaling pathways. CONCLUSION: Ru exhibits inhibitory effects on the MPTP-induced PD model by mitigating neuroinflammation and neuronal apoptosis while also inducing changes in the gut microbiota and metabolite composition.


Assuntos
Diterpenos do Tipo Caurano , Microbioma Gastrointestinal , Glucosídeos , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Doenças Neuroinflamatórias , Anti-Inflamatórios/uso terapêutico , 1-Metil-4-fenilpiridínio , Apoptose , Mediadores da Inflamação/metabolismo , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Microglia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
Chem Biol Interact ; 379: 110533, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150497

RESUMO

Tartary buckwheat flavonoids (TBF) are active components extracted from Tartary buckwheat, which have abundant biological effects. According to this study, we investigated the effect of TBF on high-fat diet (HFD)-induced kidney fibrosis and its related mechanisms. In vivo, we established an HFD-induced kidney fibrosis model in mice and administered TBF. The results showed that TBF was able to alleviate kidney injury and inflammatory response. Subsequently, the mRNA levels between the HFD group and the TBF + HFD group were detected using RNA-seq assay. According to the gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results, the differential genes were enriched in lipid metabolism and mitogen-activated protein kinases(MAPK) signaling pathways. We examined the protein expression of lipid metabolism-related pathways and the level of lipid metabolism. The results showed that TBF significantly activated the adenosine monophosphate activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathway and effectively reduced kidney total cholesterol (TC), triglyceride (TG) and low-density lipoproteinc cholesterol (LDL-C) levels and increased high-density lipoprotein cholesterol (HDL-C) levels in mice. TBF also inhibited transforming growth factor-ß1/Smad (TGF-ß1/Smad) and MAPK signaling pathways, thus slowing down the kidney fibrosis process. In vitro, using palmitic acid (PA) to stimulate TCMK-1 cells, the in vivo results similarly demonstrated that TBF could alleviate kidney fibrosis in HFD mice by inhibiting TGF1/Smad signaling pathway and MAPK signaling pathway.


Assuntos
Fagopyrum , Nefropatias , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fagopyrum/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais , Fibrose , Rim/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/patologia , Colesterol
3.
J Therm Biol ; 110: 103375, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462887

RESUMO

Lysine, as the first limiting amino acid in dairy cows, has been shown to play an important role in milk synthesis and cell proliferation. However, the underlying mechanism remains unclear. In this study, we isolated bovine primary mammary epithelial cells (BMECs) and studied the mechanism in which lysine promotes cell proliferation and ß-casein synthesis through overexpression and knockdown of CDK1 and supplements BCH, U0126, and rapamycin in BMECs. Results show that 0.7 mM lysine can significantly promote cell proliferation and the synthesis of ß-casein in BMECs. In addition, lysine activates the ERK signaling pathway to promote the expression of CDK1. Further studies have shown that CDK1 can promote cell proliferation and the synthesis of ß-casein through the mTOR signaling pathway in BMECs. Lastly, lysine can promote cell proliferation and the synthesis of ß-casein through SLC6A14 in BMECs. The above results indicate that lysine promotes cell proliferation and the synthesis of ß-casein through the SLC6A14-ERK-CDK1-mTOR signaling pathway in BMECs.


Assuntos
Caseínas , Sistema de Sinalização das MAP Quinases , Feminino , Bovinos , Animais , Lisina , Transdução de Sinais , Células Epiteliais , Proliferação de Células , Serina-Treonina Quinases TOR
4.
Aging (Albany NY) ; 13(23): 25377-25392, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890369

RESUMO

Mammary gland fibrosis is a chronic and irreversible disease. Tartary buckwheat flavonoids (TBF) are a natural product of flavonoid extracts from buckwheat and have a wide range of biological activities. The purpose of this experiment was to explore whether HFD during pregnancy and lactation induces fibrosis of the mammary tissue and whether TBF alleviates the damage caused by HFD, along with its underlying mechanism. The HFD significantly increased the levels of TNF-α, IL-6, IL-1ß, and MPO; significantly damaged the integrity of the blood-milk barrier; significantly increased the levels of collagen 1, vimentin and α-SMA, and reduced the level of E-cadherin. However, these effects were alleviated by TBF. Mechanistic studies showed that TBF inhibited the activation of AKT/NF-κB signaling and predicted the AKT amino acid residues that formed hydrogen bonds with TBF; in addition, these studies not only revealed that TBF promoted the expression of the tight junction proteins (TJs) claudin-3, occludin and ZO-1 and inhibited the activation of TGF-ß/Smad signaling but also predicted the Smad MH2 amino acid residues that formed hydrogen bonds with TBF. Conclusion: HFD consumption during pregnancy and lactation induced the tendency of mammary fibrosis. TBF alleviated the tendency of mammary fibrosis by inhibiting the activation of AKT/NF-κB, repairing the blood-milk barrier and inhibiting the activation of TGF-ß/Smad signaling.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fagopyrum/química , Flavonoides/farmacologia , Glândulas Mamárias Animais/patologia , Extratos Vegetais/farmacologia , Animais , Western Blotting , Feminino , Fibrose , Lactação/efeitos dos fármacos , Masculino , Glândulas Mamárias Animais/efeitos dos fármacos , Camundongos Endogâmicos ICR , Gravidez/efeitos dos fármacos
5.
J Zhejiang Univ Sci B ; 22(11): 929-940, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783223

RESUMO

Inflammation plays an important role in the development of acute lung injury (ALI). Severe pulmonary inflammation can cause acute respiratory distress syndrome (ARDS) or even death. Expression of proinflammatory interleukin-|1ß (IL-|1ß) and inducible nitric oxide synthase (iNOS) in the process of pulmonary inflammation will further exacerbate the severity of ALI. The purpose of this study was to explore the effect of Palrnatine (Pa) on lipopolysaccharide (LPS)-induced mouse ALI and its underlying mechanism. Pa, a natural product, has a wide range of pharmacological activities with the potential to protect against lung injury. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to detect the expression and translation of inflammatory genes and proteins in vitro and in vivo. Immunoprecipitation was used to detect the degree of P65 translocation into the nucleus. We also used molecular modeling to further clarify the mechanism of action. The results showed that Pa pretreatment could significantly inhibit the expression and secretion of the inflammatory cytokine IL-1ß, and significantly reduce the protein level of the proinflammatory protease iNOS, in both in vivo and in vitro models induced by LPS. Further mechanism studies showed that Pa could significantly inhibit the activation of the protein kinase B (Akt)/nuclear factor-κB (NF-κB) signaling pathway in the LPS-induced ALI mode and in LPS-induced RAW264.7 cells. Through molecular dynamics simulation, we observed that Pa was bound to the catalytic pocket of Akt and effectively inhibited the biological activity of Akt. These results indicated that Pa significantly relieves LPS-induced ALI by activating the Akt/NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Menispermaceae/química , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
6.
Front Immunol ; 10: 287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858849

RESUMO

Background/Aims: Mastitis is an acute clinical inflammatory response. The occurrence and development of mastitis seriously disturb women's physical and mental health. Licochalcone A, a phenolic compound in Glycyrrhiza uralensis, has anti-inflammatory properties. Here, we examined the effect of licochalcone A on blood-milk barrier and inflammatory response in LPS-induced mice mastitis. Methods:In vivo, we firstly established mice models of mastitis by canal injection of LPS to mammary gland, and then detected the effect of licochalcone A on pathological indexes, inflammatory responses and blood-milk barrier in this model. In vivo, Mouse mammary epithelial cells (mMECs) were treated with licochalcone A prior to the incubation of LPS, and then the inflammatory responses, tight junction which is the basic structure of blood-milk barrier were analyzed. Last, we elucidated the anti-inflammatory mechanism by examining the activation of mitogen-activated protein kinase (MAPK) and AKT/NF-κB signaling pathways in vivo and in vitro. Result: The in vivo results showed that licochalcone A significantly decreased the histopathological impairment and the inflammatory responses, and improved integrity of blood-milk barrier. The in vitro results demonstrated that licochalcone A inhibited LPS-induced inflammatory responses and increase the protein levels of ZO-1, occludin, and claudin3 in mMECs. The in vivo and in vitro mechanistic study found that the anti-inflammatory effect of licochalcone A in LPS-induced mice mastitis was mediated by MAPK and AKT/NF-κB signaling pathways. Conclusions and Implications: Our experiments collectively indicate that licochalcone A protected against LPS-induced mice mastitis via improving the blood-milk barrier integrity and inhibits the inflammatory response by MAPK and AKT/NF-κB signaling pathways.


Assuntos
Anti-Inflamatórios/uso terapêutico , Chalconas/uso terapêutico , Mastite/tratamento farmacológico , Leite/metabolismo , Animais , Células Cultivadas , Chalconas/farmacologia , Feminino , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastite/patologia , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/fisiologia , Peroxidase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/análise
7.
Int J Mol Sci ; 19(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011811

RESUMO

Farrerol, a type of 2, 3-dihydro-flavonoid, is obtained from Rhododendron. Previous studies have shown that Farrerol performs multiple biological activities, such as anti-inflammatory, antibacterial, and antioxidant activity. In this study, we aim to investigate the effect of Farrerol on colonic inflammation and explore its potential mechanisms. We found that the effect of Farrerol was evaluated via the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model in mice and found that Farrerol has a protective effect on TNBS-induced colitis. Farrerol administration significantly improved the weight change, clinical scores, colon length, and intestinal epithelium barrier damage and markedly decreased the inflammatory cytokines production in TNBS-induced mice. The protective effect of Farrerol was also observed in LPS-induced RAW264.7 cells. We found that Farrerol observably reduced the production of inflammatory mediators including IL-1ß, IL-6, TNF-α, COX-2, and iNOS in LPS-induced RAW264.7 cells via suppressing AKT, ERK1/2, JNK1/2, and NF-κB p65 phosphorylation. In conclusion, the study found that Farrerol has a beneficial effect on TNBS-induced colitis and might be a natural therapeutic agent for IBD treatment.


Assuntos
Cromonas/farmacologia , Colite/prevenção & controle , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Fitoterapia/métodos , Células RAW 264.7 , Rhododendron/química , Ácido Trinitrobenzenossulfônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA