RESUMO
Currently, one of the main reasons for the ineffectiveness of tumor treatment is that the abnormally high tumor interstitial pressure (TIP) hinders the delivery of drugs to the tumor center and promotes intratumoral cell survival and metastasis. Herein, we designed a "nanomotor" by in situ growth of Ag2S nanoparticles on the surface of ultrathin WS2 to fabricate Z-scheme photocatalytic drug AWS@M, which could rapidly enter tumors by splitting water in interstitial liquid to reduce TIP, along with O2 generation. Moreover, the O2 would be further converted to reactive oxygen species (ROS), accompanied by increased local temperature of tumors, and the combination of ROS with thermotherapy could eliminate the deep tumor cells. Therefore, the "nanomotor'' could effectively reduce the TIP levels of cervical cancer and pancreatic cancer (degradation rates of 40.2% and 36.1%, respectively) under 660 nm laser irradiation, further enhance intratumor drug delivery, and inhibit tumor growth (inhibition ratio 95.83% and 87.61%, respectively), and the related mechanism in vivo was explored. This work achieves efficiently photocatalytic water-splitting in tumor interstitial fluid to reduce TIP by the nanomotor, which addresses the bottleneck problem of blocking of intratumor drug delivery, and provides a general strategy for effectively inhibiting tumor growth.
Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Água , Linhagem Celular TumoralRESUMO
The source and sink balance determines crop growth, which is largely modulated by nitrogen (N) supplies. The use of mixed ammonium and nitrate as N supply can improve plant growth, however mechanisms involving the coordination of carbon and N metabolism are not well understood. Here, we investigated potato plants responding to N forms and confirmed that, compared with sole nitrate supply, mixed N (75 %/25 % nitrate/ammonium) enhanced leaf area, photosynthetic activity and N metabolism and accordingly resulted in outgrowth of stolons and shoot axillary buds. Cytokinin transportation in xylem sap and local cytokinin synthesis in leaves were up-regulated in mixed-N-treated potato plants relative to sole nitrate provision; and exogenous application of 6-benzylaminopurine in addition to sole nitrate restored leaf area, photosynthetic capacity and N content in leaves to the similar as those under mixed-N treatment. Partial defoliation, an effective method to enhance the sink strength, induced more cytokinin content in leaflets under two treatments relative to their respective controls and ultimately resulted in larger photosynthesis capacity and leaf area. These results suggest that mixed-N-enhanced plant growth through the coordination of carbon and N metabolism largely depends on the signal molecule cytokinin modulated by N supplies.