Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(19): 4260-4273, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37132514

RESUMO

This study describes the construction of a tailor-made clay-based hybrid with advanced dermocompatibility, antibacterial and anti-inflammatory performance by incorporating tunable ratios of tea tree oil (TTO) and salicylic acid (SA) into the naturally occurring porous structure of palygorskite (Pal). Among the three TTO/SA/Pal (TSP) systems constructed, TSP-1 with a TTO : SA ratio of 1 : 3 demonstrated the lowest 3T3 NRU predicted acute oral toxicity and dermal HaCaT cytotoxicity as well as the most pronounced antibacterial activity with a selective inhibitory action against the pathogens (E. coli, P. acnes and S. aureus) over the beneficial (S. epdermidis) species inhabiting on the human skin. Also noticeable is that exposure of these skin commensal bacteria to TSP-1 prevented the antimicrobial resistance evolution compared to the conventional antibiotic ciprofloxacin. Mechanistic investigation of its antibacterial modes of action revealed a synergy between the TTO and SA loadings on the Pal supports in reactive oxygen production, causing oxidative damage to bacterial cell membranes and increased leakage of intracellular compounds. Additionally, TSP-1 significantly decreased the proinflammatory cytokines of IL-1ß, IL-6, IL-8, and TNF-α in a bacterial lipopolysaccharide-stimulated differentiated THP-1 macrophage model, showing the potential to inhibit inflammatory responses in bacterial infections. Overall, this is the first report exploring the potential of constructing clay-based organic-inorganic hybrids as alternatives to antibiotics to combat bacterial resistance with advanced compatibility and anti-inflammatory benefits that are desired for the development of topically applied biopharmaceuticals.


Assuntos
Óleo de Melaleuca , Humanos , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Trombospondina 1 , Escherichia coli , Ácido Salicílico , Staphylococcus aureus , Argila , Antibacterianos/farmacologia , Bactérias , Anti-Inflamatórios
2.
Int J Pharm ; 623: 121903, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35697203

RESUMO

This paper presents a facile approach to develop palygorskite (Pal), a fibrous clay mineral, as a delivery system of tea tree oil (TTO) for topical acne therapy. The obtained TTO-Pal composite showed an efficient loading of TTO (27.4%) with a selective accumulation of terpine-4-ol and 1,8-cineole (two major antimicrobial TTO constituents), sustained release of TTO at skin physiological conditions (pH5.4, 32 °C) and superior skin sebum (2.2 g/g) absorbability. In vitro toxicological assessments showed that the Pal incorporation strategy significantly reduced the acute contact toxicity of TTO. The antimicrobial results revealed a preferable bacteriostatic effect for the TTO-Pal system towards opportunistic dermal pathogens (Escherichia coli, Staphylococcus aureus and Propionibacterium acnes) over the beneficial bacterium (Staphylococcus epidermis). Moreover, TTO-Pal based formulations exhibited pronounced clinical therapeutic efficacy in treating facial acne by rapidly reducing inflamed lesions, modulating skin sebum overproduction and restoring barrier function. This is the first report of using fibrous clay as a biocompatible nanocarrier system for topical delivery of essential oils in efficient management of facial acne with both in vitro and in vivo evidences, which may open perspectives for fibrous clay-drug delivery system in topical application and expand the high added value development of this mineral resource in the advanced healthcare fields.


Assuntos
Acne Vulgar , Óleo de Melaleuca , Acne Vulgar/tratamento farmacológico , Antibacterianos/farmacologia , Argila , Escherichia coli , Humanos , Compostos de Magnésio , Compostos de Silício , Chá , Óleo de Melaleuca/farmacologia , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA