Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Clin Nutr ; 118(3): 579-590, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454758

RESUMO

BACKGROUND: Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are closely related to neovascular eye diseases. However, the clinical significance of their oxylipins in retinal vein occlusion (RVO) remains inconclusive. OBJECTIVES: This case-control study aimed to explore metabolomic profiles of LCPUFA oxidation in RVO and to identify potential indicators for diagnosis and pathologic progression. METHODS: The plasma concentrations of ω-3 (n-3) and ω-6 (n-6) LCPUFA and their oxylipins in 44 adults with RVO and 36 normal controls were analyzed using ultraperformance liquid chromatography tandem mass spectrometry. Univariate analysis combined with principal component and orthogonal projections to latent structure discriminant analysis was used to screen differential metabolites. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of 5-oxo-eicosatetraenoic acids (ETE) on angiogenesis ex vivo. Tubule formation and wound healing assays were performed to verify its effects on human retinal microvascular endothelial cell functions. RESULTS: Higher ω-6 and lower ω-3 LCPUFA plasma concentrations were measured in the adults with RVO compared with control (odds ratio [OR]: 2.34; 95% confidence interval [CI]: 1.42, 3.86; P < 0.001; OR: 0.28; 95% CI: 0.15, 0.51; P < 0.001). Metabolomic analysis revealed 20 LCPUFA and their oxylipins dysregulated in RVO, including increased arachidonic acid (ω-6, OR: 1.85; 95% CI: 1.18, 2.90; P < 0.001) and its lipoxygenase product 5-oxo-ETE (OR: 11.76; 95% CI: 3.73, 37.11; P < 0.001), as well as decreased docosahexaenoic acid (ω-3, OR: 0.13; 95% CI: 0.05, 0.33; P < 0.001). Interestingly, 5-oxo-ETE was downregulated in ischemic compared with nonischemic central RVO. Exogenous 5-oxo-ETE attenuated aortic ring and choroidal explant sprouting and inhibited tubule formation and migration of human retinal microvascular endothelial cells in a dose-dependent manner, possibly via suppressing the vascular endothelial growth factor signaling pathway. CONCLUSIONS: The plasma concentrations of ω-6 and ω-3 LCPUFA and their oxylipins were associated with RVO. The ω-6 LCPUFA-derived metabolite 5-oxo-ETE was a potential marker of RVO development and progression.


Assuntos
Ácidos Graxos Ômega-3 , Oclusão da Veia Retiniana , Humanos , Adulto , Células Endoteliais/metabolismo , Estudos de Casos e Controles , Oxilipinas , Fator A de Crescimento do Endotélio Vascular
2.
Metabolism ; 134: 155266, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868524

RESUMO

INTRODUCTION: Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. OBJECTIVES: To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. METHODS: The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. RESULTS: CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CONCLUSIONS: CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.


Assuntos
Neovascularização de Coroide , Ácidos Graxos Ômega-3 , Degeneração Macular , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/prevenção & controle , Citocromo P-450 CYP2C8/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Insaturados/uso terapêutico , Flunarizina/uso terapêutico , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH-Ferri-Hemoproteína Redutase
3.
Nutrients ; 14(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35405946

RESUMO

There is a gap in understanding the effect of the essential ω-3 and ω-6 long-chain polyunsaturated fatty acids (LCPUFA) on Phase I retinopathy of prematurity (ROP), which precipitates proliferative ROP. Postnatal hyperglycemia contributes to Phase I ROP by delaying retinal vascularization. In mouse neonates with hyperglycemia-associated Phase I retinopathy, dietary ω-3 (vs. ω-6 LCPUFA) supplementation promoted retinal vessel development. However, ω-6 (vs. ω-3 LCPUFA) was also developmentally essential, promoting neuronal growth and metabolism as suggested by a strong metabolic shift in almost all types of retinal neuronal and glial cells identified with single-cell transcriptomics. Loss of adiponectin (APN) in mice (mimicking the low APN levels in Phase I ROP) decreased LCPUFA levels (including ω-3 and ω-6) in retinas under normoglycemic and hyperglycemic conditions. ω-3 (vs. ω-6) LCPUFA activated the APN pathway by increasing the circulating APN levels and inducing expression of the retinal APN receptor. Our findings suggested that both ω-3 and ω-6 LCPUFA are crucial in protecting against retinal neurovascular dysfunction in a Phase I ROP model; adequate ω-6 LCPUFA levels must be maintained in addition to ω-3 supplementation to prevent retinopathy. Activation of the APN pathway may further enhance the ω-3 and ω-6 LCPUFA's protection against ROP.


Assuntos
Ácidos Graxos Ômega-3 , Hiperglicemia , Neovascularização Retiniana , Retinopatia da Prematuridade , Adiponectina/metabolismo , Animais , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Humanos , Hiperglicemia/metabolismo , Recém-Nascido , Camundongos , Retina/metabolismo , Neovascularização Retiniana/metabolismo
4.
Diabetologia ; 64(1): 70-82, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099660

RESUMO

AIMS/HYPOTHESIS: Proliferative diabetic retinopathy (PDR) with retinal neovascularisation (NV) is a leading cause of vision loss. This study identified a set of metabolites that were altered in the vitreous humour of PDR patients compared with non-diabetic control participants. We corroborated changes in vitreous metabolites identified in prior studies and identified novel dysregulated metabolites that may lead to treatment strategies for PDR. METHODS: We analysed metabolites in vitreous samples from 43 PDR patients and 21 non-diabetic epiretinal membrane control patients from Japan (age 27-80 years) via ultra-high-performance liquid chromatography-mass spectrometry. We then investigated the association of a novel metabolite (creatine) with retinal NV in mouse oxygen-induced retinopathy (OIR). Creatine or vehicle was administered from postnatal day (P)12 to P16 (during induced NV) via oral gavage. P17 retinas were quantified for NV and vaso-obliteration. RESULTS: We identified 158 metabolites in vitreous samples that were altered in PDR patients vs control participants. We corroborated increases in pyruvate, lactate, proline and allantoin in PDR, which were identified in prior studies. We also found changes in metabolites not previously identified, including creatine. In human vitreous humour, creatine levels were decreased in PDR patients compared with epiretinal membrane control participants (false-discovery rate <0.001). We validated that lower creatine levels were associated with vascular proliferation in mouse retina in the OIR model (p = 0.027) using retinal metabolomics. Oral creatine supplementation reduced NV compared with vehicle (P12 to P16) in OIR (p = 0.0024). CONCLUSIONS/INTERPRETATION: These results suggest that metabolites from vitreous humour may reflect changes in metabolism that can be used to find pathways influencing retinopathy. Creatine supplementation could be useful to suppress NV in PDR. Graphical abstract.


Assuntos
Retinopatia Diabética/metabolismo , Metabolômica , Corpo Vítreo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/análise , Animais , Cromatografia Líquida de Alta Pressão , Creatina/administração & dosagem , Creatina/análise , Retinopatia Diabética/fisiopatologia , Feminino , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Retiniana/metabolismo , Corpo Vítreo/química
5.
Nutrients ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526861

RESUMO

Lutein is one of the few xanthophyll carotenoids that is found in high concentration in the macula of human retina. As de novo synthesis of lutein within the human body is impossible, lutein can only be obtained from diet. It is a natural substance abundant in egg yolk and dark green leafy vegetables. Many basic and clinical studies have reported lutein's anti-oxidative and anti-inflammatory properties in the eye, suggesting its beneficial effects on protection and alleviation of ocular diseases such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, myopia, and cataract. Most importantly, lutein is categorized as Generally Regarded as Safe (GRAS), posing minimal side-effects upon long term consumption. In this review, we will discuss the chemical structure and properties of lutein as well as its application and safety as a nutritional supplement. Finally, the effects of lutein consumption on the aforementioned eye diseases will be reviewed.


Assuntos
Oftalmopatias/tratamento farmacológico , Luteína/administração & dosagem , Animais , Disponibilidade Biológica , Catarata , Retinopatia Diabética/tratamento farmacológico , Dieta , Suplementos Nutricionais/efeitos adversos , Humanos , Luteína/química , Luteína/farmacocinética , Macula Lutea/química , Degeneração Macular/tratamento farmacológico , Miopia/tratamento farmacológico , Plantas Comestíveis/química , Retinopatia da Prematuridade/tratamento farmacológico
6.
Invest Ophthalmol Vis Sci ; 58(10): 3862-3870, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763559

RESUMO

Purpose: Neovascular age-related macular degeneration (AMD) is a major cause of legal blindness in the elderly. Diets with omega3-long-chain-polyunsaturated-fatty-acid (ω3-LCPUFA) correlate with a decreased risk of AMD. Dietary ω3-LCPUFA versus ω6-LCPUFA inhibits mouse ocular neovascularization, but the underlying mechanism needs further exploration. The aim of this study was to investigate if adiponectin (APN) mediated ω3-LCPUFA suppression of neovessels in AMD. Methods: The mouse laser-induced choroidal neovascularization (CNV) model was used to mimic some of the inflammatory aspect of AMD. CNV was compared between wild-type (WT) and Apn-/- mice fed either otherwise matched diets with 2% ω3 or 2% ω6-LCPUFAs. Vldlr-/- mice were used to mimic some of the metabolic aspects of AMD. Choroid assay ex vivo and human retinal microvascular endothelial cell (HRMEC) proliferation assay in vitro was used to investigate the APN pathway in angiogenesis. Western blot for p-AMPKα/AMPKα and qPCR for Apn, Mmps, and IL-10 were used to define mechanism. Results: ω3-LCPUFA intake suppressed laser-induced CNV in WT mice; suppression was abolished with APN deficiency. ω3-LCPUFA, mediated by APN, decreased mouse Mmps expression. APN deficiency decreased AMPKα phosphorylation in vivo and exacerbated choroid-sprouting ex vivo. APN pathway activation inhibited HRMEC proliferation and decreased Mmps. In Vldlr-/- mice, ω3-LCPUFA increased retinal AdipoR1 and inhibited NV. ω3-LCPUFA decreased IL-10 but did not affect Mmps in Vldlr-/- retinas. Conclusions: APN in part mediated ω3-LCPUFA inhibition of neovascularization in two mouse models of AMD. Modulating the APN pathway in conjunction with a ω3-LCPUFA-enriched-diet may augment the beneficial effects of ω3-LCPUFA in AMD patients.


Assuntos
Adiponectina/fisiologia , Neovascularização de Coroide/prevenção & controle , Ácidos Graxos Ômega-3/farmacologia , Degeneração Macular/complicações , Animais , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Camundongos , Receptores de Adiponectina/metabolismo
7.
Am J Clin Nutr ; 106(1): 16-26, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28515072

RESUMO

Neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, threaten the visual health of children and adults. Current treatment options, including anti-vascular endothelial growth factor therapy and laser retinal photocoagulation, have limitations and are associated with adverse effects; therefore, the identification of additional therapies is highly desirable. Both clinical and experimental studies show that dietary ω-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) reduce retinal and choroidal angiogenesis. The ω-3 LC-PUFA metabolites from 2 groups of enzymes, cyclooxygenases and lipoxygenases, inhibit [and the ω-6 (n-6) LC-PUFA metabolites promote] inflammation and angiogenesis. However, both of the ω-3 and the ω-6 lipid products of cytochrome P450 oxidase 2C promote neovascularization in both the retina and choroid, which suggests that inhibition of this pathway might be beneficial. This review summarizes our current understanding of the roles of ω-3 and ω-6 LC-PUFAs and their enzymatic metabolites in neovascular eye diseases.


Assuntos
Retinopatia Diabética/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Degeneração Macular/metabolismo , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Retinopatia da Prematuridade/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Retinopatia Diabética/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-6/uso terapêutico , Humanos , Lipoxigenases/metabolismo , Degeneração Macular/tratamento farmacológico , Prostaglandina-Endoperóxido Sintases/metabolismo , Retina/patologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Retinopatia da Prematuridade/tratamento farmacológico
8.
Clin Exp Ophthalmol ; 45(5): 529-538, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28002872

RESUMO

BACKGROUND: Retinopathy of prematurity is one of the leading causes of childhood blindness worldwide, with vessel growth cessation and vessel loss in phase I followed by neovascularization in phase II. Ischaemia contributes to its pathogenesis, and lutein protects against ischaemia-induced retinal damages. We aimed to investigate the effects of lutein on a murine model of oxygen-induced retinopathy. METHODS: Mouse pups were exposed to 75% oxygen for 5 days and returned to room air for another 5 days. Vascular obliteration, neovascularization and blood vessel leakage were examined. Immunohistochemistry for glial cells and microglia were performed. RESULTS: Compared with vehicle controls, mouse pups receiving lutein treatment displayed smaller central vaso-obliterated area and reduced blood vessel leakage. No significant difference in neovascular area was found between lutein and vehicle controls. Lutein promoted endothelial tip cell formation and maintained the astrocytic template in the avascular area in oxygen-induced retinopathy. No significant changes in Müller cell gliosis and microglial activation in the central avascular area were found in lutein-treated pups. CONCLUSIONS: Our observations indicated that lutein significantly promoted normal retinal vascular regrowth in the central avascular area, possibly through promoting endothelial tip cell formation and preserving astrocytic template. Our results indicated that lutein might be considered as a supplement for the treatment of proliferative retinopathy of prematurity because of its role in facilitating the revascularization of normal vasculature.


Assuntos
Luteína/farmacologia , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/efeitos dos fármacos , Retinopatia da Prematuridade/tratamento farmacológico , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Neuroglia/efeitos dos fármacos , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Retinopatia da Prematuridade/patologia
9.
EBioMedicine ; 13: 201-211, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27720395

RESUMO

Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)α agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP)2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs). While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Fenofibrato/farmacologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Animais , Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , PPAR alfa/metabolismo , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Neovascularização Retiniana/tratamento farmacológico , Transdução de Sinais
10.
Arterioscler Thromb Vasc Biol ; 36(9): 1919-27, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27417579

RESUMO

OBJECTIVE: Pathological ocular neovascularization is a major cause of blindness. Increased dietary intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) reduces retinal neovascularization and choroidal neovascularization (CNV), but ω-3 LCPUFA metabolites of a major metabolizing pathway, cytochrome P450 oxidase (CYP) 2C, promote ocular pathological angiogenesis. We hypothesized that inhibition of CYP2C activity will add to the protective effects of ω-3 LCPUFA on neovascular eye diseases. APPROACH AND RESULTS: The mouse models of oxygen-induced retinopathy and laser-induced CNV were used to investigate pathological angiogenesis in the retina and choroid, respectively. The plasma levels of ω-3 LCPUFA metabolites of CYP2C were determined by mass spectroscopy. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of CYP2C inhibition and ω-3 LCPUFA-derived CYP2C metabolic products on angiogenesis ex vivo. We found that inhibition of CYP2C activity by montelukast added to the protective effects of ω-3 LCPUFA on retinal neovascularization and CNV by 30% and 20%, respectively. In CYP2C8-overexpressing mice fed a ω-3 LCPUFA diet, montelukast suppressed retinal neovascularization and CNV by 36% and 39% and reduced the plasma levels of CYP2C8 products. Soluble epoxide hydrolase inhibition, which blocks breakdown and inactivation of CYP2C ω-3 LCPUFA-derived active metabolites, increased oxygen-induced retinopathy and CNV in vivo. Exposure to selected ω-3 LCPUFA metabolites of CYP2C significantly reversed the suppression of both angiogenesis ex vivo and endothelial cell functions in vitro by the CYP2C inhibitor montelukast. CONCLUSIONS: Inhibition of CYP2C activity adds to the protective effects of ω-3 LCPUFA on pathological retinal neovascularization and CNV.


Assuntos
Acetatos/farmacologia , Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/prevenção & controle , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Quinolinas/farmacologia , Neovascularização Retiniana/prevenção & controle , Retinopatia da Prematuridade/prevenção & controle , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Células Cultivadas , Neovascularização de Coroide/enzimologia , Neovascularização de Coroide/genética , Neovascularização de Coroide/fisiopatologia , Ciclopropanos , Citocromo P-450 CYP2C8/genética , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ácidos Graxos Ômega-3/metabolismo , Genótipo , Humanos , Hiperóxia/complicações , Lasers , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Neovascularização Retiniana/enzimologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/fisiopatologia , Retinopatia da Prematuridade/enzimologia , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/fisiopatologia , Sulfetos , Técnicas de Cultura de Tecidos
11.
PLoS One ; 10(7): e0132643, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161975

RESUMO

The mouse model of laser-induced choroidal neovascularization (CNV) has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Imageamento Tridimensional , Fotocoagulação a Laser , Animais , Lâmina Basilar da Corioide/patologia , Neovascularização de Coroide/patologia , Dieta , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Feminino , Masculino , Camundongos Endogâmicos C57BL , Volatilização
12.
Am J Clin Nutr ; 101(4): 879-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25833984

RESUMO

BACKGROUND: Retinopathy of prematurity (ROP) is a vision-threatening disease in premature infants. Serum adiponectin (APN) concentrations positively correlate with postnatal growth and gestational age, important risk factors for ROP development. Dietary ω-3 (n-3) long-chain polyunsaturated fatty acids (ω-3 LCPUFAs) suppress ROP and oxygen-induced retinopathy (OIR) in a mouse model of human ROP, but the mechanism is not fully understood. OBJECTIVE: We examined the role of APN in ROP development and whether circulating APN concentrations are increased by dietary ω-3 LCPUFAs to mediate the protective effect in ROP. DESIGN: Serum APN concentrations were correlated with ROP development and serum ω-3 LCPUFA concentrations in preterm infants. Mouse OIR was then used to determine whether ω-3 LCPUFA supplementation increases serum APN concentrations, which then suppress retinopathy. RESULTS: We found that in preterm infants, low serum APN concentrations positively correlate with ROP, and serum APN concentrations positively correlate with serum ω-3 LCPUFA concentrations. In mouse OIR, serum total APN and bioactive high-molecular-weight APN concentrations are increased by ω-3 LCPUFA feed. White adipose tissue, where APN is produced and assembled in the endoplasmic reticulum, is the major source of serum APN. In mouse OIR, adipose endoplasmic reticulum stress is increased, and APN production is suppressed. ω-3 LCPUFA feed in mice increases APN production by reducing adipose endoplasmic reticulum stress markers. Dietary ω-3 LCPUFA suppression of neovascularization is reduced from 70% to 10% with APN deficiency. APN receptors localize in the retina, particularly to pathologic neovessels. CONCLUSION: Our findings suggest that increasing APN by ω-3 LCPUFA supplementation in total parental nutrition for preterm infants may suppress ROP.


Assuntos
Adiponectina/sangue , Adiposidade/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Neovascularização Retiniana/tratamento farmacológico , Células 3T3-L1 , Adiponectina/deficiência , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Animais Recém-Nascidos/sangue , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/sangue , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estudos Prospectivos , Retina/efeitos dos fármacos , Retina/metabolismo , Neovascularização Retiniana/sangue , Retinopatia da Prematuridade/sangue , Retinopatia da Prematuridade/tratamento farmacológico
13.
Arterioscler Thromb Vasc Biol ; 34(3): 581-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24458713

RESUMO

OBJECTIVE: Regulation of angiogenesis is critical for many diseases. Specifically, pathological retinal neovascularization, a major cause of blindness, is suppressed with dietary ω3-long-chain polyunsaturated fatty acids (ω3LCPUFAs) through antiangiogenic metabolites of cyclooxygenase and lipoxygenase. Cytochrome P450 epoxygenases (CYP2C8) also metabolize LCPUFAs, producing bioactive epoxides, which are inactivated by soluble epoxide hydrolase (sEH) to transdihydrodiols. The effect of these enzymes and their metabolites on neovascularization is unknown. APPROACH AND RESULTS: The mouse model of oxygen-induced retinopathy was used to investigate retinal neovascularization. We found that CYP2C (localized in wild-type monocytes/macrophages) is upregulated in oxygen-induced retinopathy, whereas sEH is suppressed, resulting in an increased retinal epoxide:diol ratio. With a ω3LCPUFA-enriched diet, retinal neovascularization increases in Tie2-driven human-CYP2C8-overexpressing mice (Tie2-CYP2C8-Tg), associated with increased plasma 19,20-epoxydocosapentaenoic acid and retinal epoxide:diol ratio. 19,20-Epoxydocosapentaenoic acids and the epoxide:diol ratio are decreased with overexpression of sEH (Tie2-sEH-Tg). Overexpression of CYP2C8 or sEH in mice does not change normal retinal vascular development compared with their wild-type littermate controls. The proangiogenic role in retina of CYP2C8 with both ω3LCPUFA and ω6LCPUFA and antiangiogenic role of sEH in ω3LCPUFA metabolism were corroborated in aortic ring assays. CONCLUSIONS: Our results suggest that CYP2C ω3LCPUFA metabolites promote retinal pathological angiogenesis. CYP2C8 is part of a novel lipid metabolic pathway influencing retinal neovascularization.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Ácidos Graxos Ômega-3/toxicidade , Macrófagos/enzimologia , Monócitos/enzimologia , Neovascularização Retiniana/induzido quimicamente , Animais , Ácido Araquidônico/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Biotransformação , Hipóxia Celular , Citocromo P-450 CYP2C8 , Gorduras na Dieta/farmacocinética , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Epóxido Hidrolases/deficiência , Epóxido Hidrolases/genética , Epóxido Hidrolases/fisiologia , Proteínas do Olho/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/classificação , Ácidos Graxos Ômega-3/farmacocinética , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/farmacocinética , Humanos , Lipoxigenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigênio/toxicidade , Prostaglandina-Endoperóxido Sintases/metabolismo , RNA Mensageiro/biossíntese , Receptor TIE-2/genética , Proteínas Recombinantes de Fusão/metabolismo , Neovascularização Retiniana/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA