Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 363: 550-561, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804880

RESUMO

Anticancer drug resistance invariably emerges and poses a significant barrier to curative therapy for various breast cancers. This results in a lack of satisfactory therapeutic medicine for cancer treatment. Herein, a universal vector system for drug-resistance breast cancer was designed to meet the needs of reversed multidrug resistance, thermo-chemotherapy, and long-term drug release behavior. The vector system comprises polycaprolactone (PCL) nanofiber mesh and magnetic nanoparticles (MNPs). PCL has excellent biocompatibility and electrospinning performance. In this study, MNPs were tailored to be thermogenic in response to an alternating magnetic field (AMF). PCL nanofiber can deliver various chemotherapy drugs, and suitable MNPs encapsulated in the nanofiber can generate hyperthermia and synergistic effect with those chemotherapy drugs. Therefore, a more personalized treatment system can be developed for different breast malignancies. In addition, the PCL nanofiber mesh (NFM) enables sustained release of the drugs for up two months, avoiding the burden on patients caused by repeated administration. Through model drugs doxorubicin (DOX) and chemosensitizers curcumin (CUR), we systematically verified the therapeutic effect of DOX-resistance breast cancer and inhibition of tumor generation in vivo. These findings represent a multifaceted platform of importance for validating strategic reversed MDR in pursuit of promoted thermo-chemotherapeutic outcomes. More importantly, the low cost and excellent safety and efficacy of this nanofiber mesh demonstrate that this can be customized multi-function vector system may be a promising candidate for refractory cancer therapy in clinical.


Assuntos
Neoplasias da Mama , Curcumina , Hipertermia Induzida , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Hipertermia Induzida/métodos , Doxorrubicina , Portadores de Fármacos/uso terapêutico , Curcumina/uso terapêutico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA