Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1228088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790609

RESUMO

Background: Polycystic ovary syndrome (PCOS) is a common disorder resulting in irregular menstruation and infertility due to improper follicular development and ovulation. PCOS pathogenesis is mediated by downregulated follicle-stimulating hormone receptor (FSHR) expression in granulosa cells (GCs); however, the underlying mechanism remains elusive. Unkeito (UKT) is a traditional Japanese medicine used to treat irregular menstruation in patients with PCOS. In this study, we aimed to confirm the effectiveness of UKT in PCOS by focusing on follicle-stimulating hormone (FSH) responsiveness. Methods: A rat model of PCOS was generated by prenatal treatment with 5α-dihydrotestosterone. Female offspring (3-week-old) rats were fed a UKT mixed diet or a normal diet daily. To compare the PCOS phenotype in rats, the estrous cycle, hormone profiles, and ovarian morphology were evaluated. To further examine the role of FSH, molecular, genetic, and immunohistological analyses were performed using ovarian tissues and primary cultured GCs from normal and PCOS model rats. Results: UKT increased the number of antral and preovulatory follicles and restored the irregular estrous cycle in PCOS rats. The gene expression levels of FSHR and bone morphogenetic protein (BMP)-2 and BMP-6 were significantly decreased in the ovarian GCs of PCOS rats compared to those in normal rats. UKT treatment increased FSHR staining in the small antral follicles and upregulated Fshr and Bmps expression in the ovary and GCs of PCOS rats. There was no change in serum gonadotropin levels. In primary cultured GCs stimulated by FSH, UKT enhanced estradiol production, accompanied by increased intracellular cyclic adenosine monophosphate levels, and upregulated the expression of genes encoding the enzymes involved in local estradiol synthesis, namely Cyp19a1 and Hsd17b. Furthermore, UKT elevated the expression of Star and Cyp11a1, involved in progesterone production in cultured GCs in the presence of FSH. Conclusions: UKT stimulates ovarian follicle development by potentiating FSH responsiveness by upregulating BMP-2 and BMP-6 expression, resulting in the recovery of estrous cycle abnormalities in PCOS rats. Restoring the FSHR dysfunction in the small antral follicles may alleviate the PCOS phenotype.


Assuntos
Síndrome do Ovário Policístico , Humanos , Gravidez , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/metabolismo , Hormônio Foliculoestimulante , Proteína Morfogenética Óssea 6 , Estradiol , Hormônio Foliculoestimulante Humano , Distúrbios Menstruais
2.
PLoS One ; 18(3): e0283626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996098

RESUMO

BACKGROUND: Daikenchuto (DKT) has positive therapeutic effects on improving various gastrointestinal disorders. The present study investigated whether or not DKT has a potential therapeutic effect on chemotherapy-induced acute small intestinal mucositis (CIM) in a rat model. METHODS: Intraperitoneal injection of 10 mg/kg methotrexate (MTX) every 3 days for a total of 3 doses was used for induction of CIM in a rat model. The MTX and DKT-MTX groups were injected with MTX as above from the first day, and the DKT-MTX and DKT groups were administered 2.7% DKT via the diet at the same time. The rats were euthanized on day 15. RESULTS: The DKT-MTX group showed an improvement in the body weight and conditions of gastrointestinal disorders as well as increased levels of diamine oxidase in plasma and in the small intestinal villi. The pathology results showed that small intestinal mucosal injury in the DKT-MTX group was less severe than that in the MTX group. Immunohistochemistry for myeloperoxidase and malondialdehyde and quantitative real-time polymerase chain reaction (RT-qPCR) for TGF-ß1 and HIF-1α showed that DKT attenuated peroxidative damage. The crypts in the DKT-MTX group contained more Ki-67-positive cells than MTX group. The zonula occluden-1 and claudin-3 results showed that DKT promoted repair of the mucosal barrier. RT-qPCR for the amino acid transporters EAAT3 and BO+AT also confirmed that DKT promoted mucosal repair and thus promoted nutrient absorption. CONCLUSION: DKT protected against MTX-induced CIM in a rat model by reducing inflammation, stimulating cell proliferation, and stabilizing the mucosal barrier.


Assuntos
Enterite , Mucosite , Panax , Ratos , Animais , Metotrexato/toxicidade , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/patologia , Mucosa Intestinal/metabolismo , Enterite/patologia
3.
Gene ; 846: 146856, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067864

RESUMO

Dysregulation of lipid metabolism and diabetes are risk factors for nonalcoholic fatty liver disease (NAFLD), and the gut-liver axis and intestinal microbiome are known to be highly associated with the pathogenesis of this disease. In Japan, the traditional medicine daisaikoto (DST) is prescribed for individuals affected by hepatic dysfunction. Herein, we evaluated the therapeutic potential of DST for treating NAFLD through modification of the liver and stool metabolome and microbiome by using STAM mice as a model of NAFLD. STAM mice were fed a high-fat diet with or without 3 % DST for 3 weeks. Plasma and liver of STAM, STAM with DST, and C57BL/6J ("Normal") mice were collected at 9 weeks, and stools at 4, 6, and 9 weeks of age. The liver pathology, metabolome and stool microbiome were analyzed. DST ameliorated the NAFLD activity score of STAM mice and decreased the levels of several liver lipid mediators such as arachidonic acid and its derivatives. In normal mice, nine kinds of family accounted for 94.1 % of microbiome composition; the total percentage of these family was significantly decreased in STAM mice (45.6 %), and DST administration improved this imbalance in microbiome composition (65.2 %). In stool samples, DST increased ursodeoxycholic acid content and altered several amino acids, which were correlated with changes in the gut microbiome and liver metabolites. In summary, DST ameliorates NAFLD by decreasing arachidonic acid metabolism in the liver; this amelioration seems to be associated with crosstalk among components of the liver, intestinal environment, and microbiome.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Aminoácidos/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal/fisiologia , Japão , Lipídeos/farmacologia , Fígado/metabolismo , Medicina Tradicional , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Ursodesoxicólico/farmacologia
4.
Biomed Pharmacother ; 152: 113263, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717933

RESUMO

Changes in the intestinal microbiota are known to occur in constipated patients. Dietary fiber restriction presents obstacles to appropriate defecation and affects fecal properties, but the relationship between fecal microbiota and fecal morphological properties remains obscure. Therefore, we examined the influence of fiber diets on the fecal microbiome and properties in rats, and the effectiveness of the Japanese traditional medicine Junchoto (JCT) in rats with fiber deficit-induced constipation. Rats were fed three different fiber diets with varying cellulose contents (0 %, FFD; 5 %, ND; 15 %, HFD), respectively, as follows: study 1: 21 days of feeding; study 2: 14 days of feeding followed by 7 days of ND (fiber normalization in all groups); study 3: FFD for 21 days, followed by JCT administration from 14 days. Fecal properties and 16S rRNA amplicon sequencing results were examined. We observed that the fecal frequency, dry weight, and length were increased, and water ratio were decreased in a cellulose dose-dependent manner. The difference in several kinds of fecal microbiota, but not the α-diversity Chao1 index and the Firmicutes/Bacteroidetes ratio (F/B ratio), between groups were observed. The change in fecal property in both the HFD and FFD groups was ameliorated with fiber normalization, accompanied by alteration of the Chao1 index and/or F/B ratio. JCT administration reversed the fecal morphological changes in FFD group, accompanied by F/B ratio increasing. In conclusion, short-term dietary changes modulated microbial homeostasis, which is linked to fecal property. JCT may alter the F/B ratio and improve fecal properties to facilitate easier excretion.


Assuntos
Microbioma Gastrointestinal , Animais , Bacteroidetes , Celulose , Constipação Intestinal , Fibras na Dieta , Firmicutes , Humanos , Japão , Medicina Tradicional , RNA Ribossômico 16S/genética , Ratos
5.
PLoS One ; 17(6): e0269698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704618

RESUMO

Antibiotics disrupt normal gut microbiota and cause dysbiosis, leading to a reduction in intestinal epithelial barrier function. Disruption of the intestinal epithelial barrier, which is known as "leaky gut", results in increased intestinal permeability and contributes to the development or exacerbation of gastrointestinal diseases such as inflammatory bowel disease and irritable bowel syndrome. We have previously reported on a murine model of intestinal epithelial barrier dysfunction associated with dysbiosis induced by the administration of ampicillin and vancomycin. Saireito, a traditional Japanese herbal medicine, is often used to treat autoimmune disorders including ulcerative colitis; the possible mechanism of action and its efficacy, however, remains unclear. In this study, we examined the efficacy of Saireito in our animal model for leaky gut associated with dysbiosis. C57BL/6 mice were fed a Saireito diet for the entirety of the protocol (day1-28). To induce colitis, ampicillin and vancomycin were administered in drinking water for the last seven consecutive days (day22-28). As previously demonstrated, treatment with antibiotics caused fecal occult bleeding, cecum enlargement with black discoloration, colon inflammation with epithelial cell apoptosis, and upregulation of pro-inflammatory cytokines. Oral administration of Saireito significantly improved antibiotics-induced fecal occult bleeding and cecum enlargement by suppressing inflammation in the colon. Furthermore, Saireito treatment ensured the integrity of the intestinal epithelial barrier by suppressing apoptosis and inducing cell adhesion proteins including ZO-1, occludin, and E-cadherin in intestinal epithelial cells, which in turn decreased intestinal epithelial permeability. Moreover, the reduced microbial diversity seen in the gut of mice treated with antibiotics was remarkably improved with the administration of Saireito. In addition, Saireito altered the composition of gut microbiota in these mice. These results suggest that Saireito alleviates leaky gut caused by antibiotic-induced dysbiosis. Our findings provide a potentially new therapeutic strategy for antibiotic-related gastrointestinal disorders.


Assuntos
Colite Ulcerativa , Colite , Ampicilina/metabolismo , Animais , Antibacterianos , Colite/metabolismo , Colite Ulcerativa/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Disbiose/metabolismo , Medicina Herbária , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Japão , Camundongos , Camundongos Endogâmicos C57BL , Vancomicina/efeitos adversos
6.
Sci Rep ; 12(1): 10105, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710868

RESUMO

Melanocortin 4 receptor gene-knockout (MC4R-KO) mice are known to develop obesity with a high-fat diet. Meanwhile, daisaikoto, one of Kampo medicines, is a drug that is expected to have therapeutic effects on obesity. Here, we report the efficacy of daisaikoto in MC4R-KO mice. Eight-week-old MC4R-KO male mice (n = 12) were divided into three groups as follows: the SD group, which is fed with a standard diet; the HFD group, fed a high-fat diet; and the DSK group, fed with a high-fat diet containing 10% of daisaikoto. After the four-week observation period, mice in each group were sacrificed and samples were collected. The body weights at 12 weeks were significantly higher in the HFD group than in the other groups, indicating that daisaikoto significantly reduced body weight gain and fat deposition of the liver. The metabolome analysis indicated that degradation of triglycerides and fatty acid oxidation in the liver were enhanced by daisaikoto administration. In MC4R-KO mice, the cytoplasm and uncoupling protein 1 expression of brown adipose tissue was decreased; however, it was reversed in the DSK group. In conclusion, daisaikoto has potentially improved fatty liver and obesity, making it a useful therapeutic agent for obesity and fatty liver.


Assuntos
Tecido Adiposo Marrom , Fígado Gorduroso , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina
7.
Data Brief ; 42: 108197, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35515992

RESUMO

We performed RNA-seq analyses of mRNA isolated from five organs, liver, bone, heart, kidney and blood at the pre-symptomatic state of klotho mice with/without administration of a Japanese traditional herbal medicine, juzentaihoto (JTT). Data of differentially expressed genes (DEG) with/without JTT was included. Intron retention (IR) is an important regulatory mechanism that affects gene expression and protein functions. We collected data in which retained-introns were accumulated in a particular set of genes of these organs, and showed that among these retained introns in the liver and bone a subset was recovered to the normal state by the medicine. All of the data present changes of molecular events on the levels of metabolites, proteins and gene expressions observed at the pre- symptomatic state of aging in klotho mice with/without JTT. The research article related to this Data in Brief is published in GENE entitled as "Intron retention as a new pre-symptomatic marker of aging and its recovery to the normal state by a traditional Japanese herbal medicine".

8.
Front Physiol ; 13: 848960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299665

RESUMO

Malnutrition impairs basic daily activities and leads to physical frailty, which is aggravated in the elderly compared with young adults. It is also well-known that the elderly are more vulnerable to metabolic stress. Therefore, in this study, using a food restricted (FR) mouse, we aimed to evaluate the effect of aging on locomotor activity and liver metabolic function. Further, we also investigated the involvement of hepatic mitochondria in liver metabolic function during aging, as well as the therapeutic benefit of the traditional Japanese medicine, hochuekkito (HET). Our findings indicated that following food restriction provided as 30% of ad libitum intake for 5 days, the locomotor activity was lower in 23-26-month-old (aged) mice than in 9-week-old (young) mice. Further, compared with young mice, aged mice exhibited significant decreases in the levels of metabolites related to the urea cycle, mitochondrial function, and anti-oxidative stress. The livers of the aged mice also showed a greater decrease in mitochondrial DNA copy number than young mice. Furthermore, the gene expression levels of sirtuin 1 (SIRT1) and mitochondrial biogenesis-related regulators were attenuated in aged mice. However, these changes were partially restored by HET treatment, which also improved locomotor activity, and combined treatment with alanine resulted in more significant effects in this regard. Therefore, our findings suggested that the decrease in locomotor activity in aged FR mice was associated with a decline in the metabolic function of hepatic mitochondria via decreased SIRT1 expression, which was restored by HET treatment. This implies that enhancing the metabolic function of liver mitochondria can contribute to alleviating energy deficiency in the elderly.

9.
Regen Ther ; 18: 231-241, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34409135

RESUMO

BACKGROUND: Liver cirrhosis is an end-stage multiple liver disease. Mesenchymal stem cells (MSCs) are an attractive cell source for reducing liver damage and regressing fibrosis; additional therapies accompanying MSCs can potentially enhance their therapeutic effects. Kampo medicines exhibit anti-inflammatory and anti-oxidative effects. Here, we investigated the therapeutic effect of MSCs combined with the Kampo medicine Juzentaihoto (JTT) as a combination therapy in a carbon tetrachloride (CCl4)-induced cirrhosis mouse model. METHODS: C57BL/6 mice were administered JTT (orally) and/or MSCs (one time, intravenously). The levels of liver proteins were measured in the sera. Sirius Red staining and hydroxyproline quantitation of hepatic tissues and immune cells were conducted, and their associated properties were evaluated. Liver metabolomics of liver tissues was performed. RESULTS: JTT monotherapy attenuated liver damage and increased serum albumin level, but it did not effectively induce fibrolysis. JTT rapidly reduced liver damage, in a dose-dependent manner, after a single-dose CCl4 administration. Furthermore, JTT-MSC combination therapy attenuated liver damage, improved liver function, and regressed liver fibrosis. The combination increased the CD4+/CD8+ ratio. JTT had stronger effects on NK and regulatory T cell induction, whereas MSCs more strongly induced anti-inflammatory macrophages. The combination therapy further induced anti-inflammatory macrophages. JTT normalized lipid mediators, and tricarboxylic acid cycle- and urea cycle-related mediators effectively. CONCLUSIONS: The addition of JTT enhanced the therapeutic effects of MSCs; this combination could be a potential treatment option for cirrhosis.

10.
Biomed Pharmacother ; 141: 111860, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34246954

RESUMO

EGFR tyrosine kinase inhibitors (TKIs) are mainly used to treat non-small cell lung cancer; however, adverse effects such as severe diarrhea represent a major obstacle towards the continuation of EGFR-TKIs therapy. Chloride channels, which control the fluid flow in the intestinal lumen, are proposed as an important target to remediate EGFR-TKIs-induced diarrhea, but the mechanism remains unclear. The aim of this study was to clarify the mechanism underlying EGFR-TKIs-induced diarrhea with a particular focus on the role of intestinal chloride channels. Here, we show that osimertinib-treated rats exhibit diarrhea and an increase in fecal water content without showing any severe histopathological changes. This diarrhea was attenuated by intraperitoneal treatment with the calcium-activated chloride channel (CaCC) inhibitor CaCCinh-A01. These findings were confirmed in afatinib-treated rats with diarrhea. Moreover, treatment with the Japanese traditional herbal medicine, hangeshashinto (HST), decreased fecal water content and improved fecal appearance in rats treated with EGFR-TKIs. HST inhibited the ionomycin-induced CaCC activation in HEK293 cells in patch-clamp current experiments and its active ingredients were identified. In conclusion, secretory diarrhea induced by treatment with EGFR-TKIs might be partially mediated by the activation of CaCC. Therefore, blocking the CaCC could be a potential new treatment for EGFR-TKI-induced diarrhea.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/metabolismo , Diarreia/induzido quimicamente , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/toxicidade , Acrilamidas/toxicidade , Afatinib/toxicidade , Compostos de Anilina/toxicidade , Animais , Diarreia/patologia , Fezes/química , Células HEK293 , Humanos , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Tiofenos/farmacologia , Água/química
11.
Gene ; 794: 145752, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34082065

RESUMO

Intron retention (IR) is an important regulatory mechanism that affects gene expression and protein functions. Using klotho mice at the pre-symptomatic state, we discovered that retained-introns accumulated in several organs including the liver and that among these retained introns in the liver a subset was recovered to the normal state by a Japanese traditional herbal medicine. This is the first report of IR recovery by a medicine. IR-recovered genes fell into two categories: those involved in liver-specific metabolism and in splicing. Metabolome analysis of the liver showed that the klotho mice were under starvation stress. In addition, our differentially expressed gene analysis showed that liver metabolism was actually recovered by the herbal medicine at the transcriptional level. By analogy with the widespread accumulation of intron-retained pre-mRNAs induced by heat shock stress, we propose a model in which retained-introns in klotho mice were induced by an aging stress and in which this medicine-related IR recovery is indicative of the actual recovery of liver-specific metabolic function to the healthy state. Accumulation of retained-introns was also observed at the pre-symptomatic state of aging in wild-type mice and may be an excellent marker for this state in general.


Assuntos
Envelhecimento/genética , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos/efeitos dos fármacos , Glucuronidase/genética , Fígado/química , Compostos Fitoquímicos/administração & dosagem , Envelhecimento/efeitos dos fármacos , Processamento Alternativo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico , Íntrons , Japão , Proteínas Klotho , Fígado/efeitos dos fármacos , Medicina Tradicional , Metabolômica , Camundongos , Modelos Animais , Compostos Fitoquímicos/farmacologia , Precursores de RNA/genética , Análise de Sequência de RNA
12.
Sci Rep ; 10(1): 20775, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247192

RESUMO

The role of weak acids with pH values in the range of 4-7 has been implicated in the symptoms of gastroesophageal reflux disease (GERD). Prostaglandin E2 (PGE2) is associated with heartburn symptom in GERD patients; however, the precise productive mechanisms remain unclear. In this study, we revealed that exposure to weak acids increases PGE2 production with a peak at pH 4-5, slightly in human normal oesophageal cells (Het-1A), and robustly in oesophageal squamous carcinoma cells (KYSE-270). Release of PGE2 from the oesophageal mucosa was augmented by weak acid treatment in rat. Chenodeoxycholic acid (CDCA), a bile acid, upregulated cyclooxygenase-2 (COX-2) expression in Het-1A and KYSE-270 and induced PGE2 production in KYSE-270 cells. Weak acid-induced PGE2 production was significantly inhibited by cytosolic phospholipase A2 (cPLA2), ERK, and transient receptor potential cation channel subfamily V member 4 (TRPV4), a pH-sensing ion channel, inhibitors. Hangeshashinto, a potent inhibitor of COX-2, strongly decreased weak acid- and CDCA-induced PGE2 levels in KYSE-270. These results indicated that weak acids induce PGE2 production via TRPV4/ERK/cPLA2 in oesophageal epithelial cells, suggesting a role in GERD symptoms like heartburn. Interventions targeting pH values up to 5 may be necessary for the treatment of GERD.


Assuntos
Ácidos/efeitos adversos , Dinoprostona/biossíntese , Mucosa Esofágica/efeitos dos fármacos , Mucosa Esofágica/metabolismo , Refluxo Gastroesofágico/etiologia , Refluxo Gastroesofágico/metabolismo , Animais , Células Cultivadas , Ácido Quenodesoxicólico/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Refluxo Gastroesofágico/tratamento farmacológico , Azia/etiologia , Azia/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Canais de Cátion TRPV/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-32089720

RESUMO

Anxiety and depression often occur with gastrointestinal symptoms. Although the Japanese traditional medicine (Kampo medicine) bukuryoingohangekobokuto (BGH) is approved for treating anxiety, neurotic gastritis, and heartburn, its effect on gastrointestinal motility remains poorly known. This study aimed to examine the effect of BGH on delayed gastric emptying in stress model mice and clarified its action mechanism. Seven-week-old C57BL/6 male mice were acclimated for a week and fasted overnight. Stress hormone, corticotropin-releasing factor (CRF), was intracerebroventricularly injected to mice, and solid nutrient meal (ground chow and distilled water) was orally administered 1 hour after. Gastric contents were collected to evaluate gastric emptying rates by measuring its dry weight. Injection of CRF (0.3 or 1.0 µg/mouse) significantly delayed the 2-hour gastric emptying in mice. BGH (1.0 g/kg), which was administered 30 minutes before the CRF injection, significantly ameliorated the delayed gastric emptying induced by CRF (0.3 µg/mouse). BGH (0.5, 1.0 g/kg) significantly enhanced the 1-hour gastric emptying and slightly increased the 2-hour gastric emptying in mice without CRF injection. In vitro functional assays showed that components of BGH antagonized or inhibited CRF type-2, dopamine D2/D3, neuropeptide Y Y2 receptors, or acetylcholinesterase. In conclusion, the components of BGH may exert synergistic effects on improving gastric emptying via various targets. BGH is considered to be potentially useful for treating gastrointestinal dysmotility with psychological symptoms.

14.
Neurogastroenterol Motil ; 31(11): e13689, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374154

RESUMO

BACKGROUND: The traditional Japanese herbal medicine, daikenchuto (DKT), has been used to treat constipation and postoperative ileus. However, the precise mechanisms involved in the pharmacological effects of DKT remain uncertain. The aim of this study was to clarify the effect of DKT on motor patterns and transit activity in the isolated rat colon. METHODS: The entire colon or segments of the proximal colon in rats were isolated and placed in Krebs solution. The motility of the colon was evaluated by analyzing spatiotemporal maps of diameter derived from video imaging and measuring the intraluminal pressure in the anal end of the proximal colon, and the transit time of a plastic bead through the entire isolated colon. KEY RESULTS: Several types of propagating contractions were observed in the isolated entire colon. When DKT was added to Krebs solution, the frequency of large-extent anal propagating contractions increased. DKT treatment increased the intraluminal pressure in the isolated proximal colon, which was related to the propagating contractions. This effect was abolished by treatment with the neural blocker tetrodotoxin. These findings suggest DKT induced peristaltic contractions in the isolated colon. DKT accelerated colonic transit activity, which was related to peristaltic contractions induction in the colon. These effects were also observed in the colons treated with bethanechol and the active ingredient of DKT, hydroxy-α-sanshool. CONCLUSIONS AND INFERENCES: Daikenchuto could enhance colonic transit activity by inducing peristaltic contractions, which may be mediated by the activation of the enteric nervous system in the colon.


Assuntos
Colo/efeitos dos fármacos , Peristaltismo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Sistema Nervoso Entérico/efeitos dos fármacos , Masculino , Músculo Liso/efeitos dos fármacos , Panax , Ratos , Ratos Sprague-Dawley , Zanthoxylum , Zingiberaceae
15.
J Pharmacol Exp Ther ; 369(3): 466-472, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30967403

RESUMO

Taste stimulants play important roles in triggering digestion and absorption of nutrients and in toxin detection, under the control of the gut-brain axis. Bitter compounds regulate gut hormone secretion and gastrointestinal motility through bitter taste receptors (TAS2Rs) located in the taste buds on the tongue and in the enteroendocrine cells. Gastric accommodation (GA) is an important physiologic function. However, the role of TAS2R agonists in regulating GA remains unclear. To clarify whether GA is influenced by bitter stimulants, we examined the effect of TAS2R agonist denatonium benzoate (DB), administered intraorally and intragastrically, by measuring the consequent intrabag pressure in the proximal stomach of guinea pigs. Effects of the Kampo medicine rikkunshito (RKT) and its bitter components liquiritigenin and naringenin on GA were also examined. Intraoral DB (0.2 nmol/ml) administration enhanced GA. Intragastric DB administration (0.1 and 1 nmol/kg) promoted GA, whereas higher DB doses (30 µmol/kg) inhibited it. Similar changes in GA were observed with intragastric (1000 mg/kg) and intraoral (200 mg/ml) RKT administration. Liquiritigenin and naringenin also promoted GA. These findings suggest that GA is affected by the stimulation of TAS2Rs in the oral cavity or gut in guinea pigs.


Assuntos
Mucosa Gástrica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estômago/fisiologia , Animais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/química , Cobaias , Masculino , Estômago/efeitos dos fármacos
16.
Surgery ; 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29576309

RESUMO

BACKGROUND: Prostaglandin E2 is one of the potential products that promotes development of tumors and also is a strong inducer of M2 phenotype macrophages, which contribute to tumor development in the immunosuppressed microenvironment. Hangeshashinto (TJ-14), a Japanese traditional medicine (Kampo medicine), has been reported to be effective in preventing chemotherapy-induced oral mucositis through the reduction of prostaglandin E2. We previously developed a surgical rat reflux model of esophageal cancer and used this well-established animal model to investigate the action of TJ-14 in preventing esophageal cancer. We also assessed the effect of TJ-14 on the downregulation of prostaglandin E2 production, utilizing esophageal squamous cell carcinoma cell line exposed to bile acid. METHODS: An end-to-side esophagojejunostomy was performed for the reflux model. A daily oral diet was subsequently administered, consisting of either diet-incorporated TJ-14 or standard diet as a control group. The rats were killed at 40 weeks after surgery. The incidence of esophageal cancer, Barrett's metaplasia, and proliferative hyperplasia were assessed histologically. CD163, a M2 phenotype macrophage marker, was assessed with immunohistochemistry. Prostaglandin E2 enzyme immunoassay and lactate dehydrogenase assay were performed on chenodeoxycholic acid or gastroesophageal reflux contents exposed to esophageal squamous cell carcinoma cell line. RESULTS: Sixty-seven percent of the controls (n = 12) developed esophageal cancer, but animals that received TJ-14 (n = 10) had a cancer incidence of 10% (P=.007). Barrett's metaplasia was found in 83% of the rats in the control group and 50% of the rats in the TJ-14 indicating a protective tendency of TJ-14 (P=.095). All of the rats developed proliferative hyperplasia. The number of M2 phenotype macrophage were significantly decreased in the TJ-14 group compared to the control group in both Barrett's metaplasia and esophageal cancer lesions. TJ-14 inhibited chenodeoxycholic acid or gastroesophageal reflux content-induced prostaglandin E2 production in esophageal squamous cell carcinoma cell. CONCLUSION: TJ-14 reduced the incidence of reflux-induced esophageal cancer and the infiltration of M2 macrophages in a surgical rat model or suppressed prostaglandin E2 production in esophageal squamous cell carcinoma cell. Further investigation is required regarding the potential clinical use of TJ-14 as an esophageal cancer chemopreventive agent.

17.
J Pharmacol Exp Ther ; 362(1): 78-84, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28465373

RESUMO

Opioid receptor stimulants are analgesics used in patients with and without cancer; however, they often cause constipation, resulting in poor adherence and deterioration of the quality of life. Hence, suitable treatments for constipation are required. In this study, we investigated the pharmacological mechanisms of action of mashiningan (MNG), a Kampo medicine used to treat constipation, and evaluated the effect of MNG on opioid-induced constipation in rats. MNG (100 or 300 mg/kg) was orally administered to normal or codeine phosphate (CPH)-induced constipation in rats, and its effect was evaluated on the basis of fecal counts, characteristics, and weight. Small intestinal fluid secretion was measured after treatment with MNG alone or coadministration with a cystic fibrosis transmembrane conductance regulator (CFTR)-specific inhibitor (CFTRinh-172). The effects of MNG on the CFTR and type-2 chloride channel were determined using patch-clamp or short-circuit current experiments, respectively. MNG increased the fecal weight and proportion of soft feces in normal rats. CPH-induced constipation in rats decreased fecal counts and weight, whereas MNG prevented these effects and increased the proportion of soft feces. MNG increased the electronic chloride current, and this effect was inhibited by the CFTRinh-172 in the CFTR assay. Furthermore, MNG increased small intestinal fluid secretion, and this effect was abolished by coadministration with the CFTRinh-172. MNG improved opioid-induced constipation in rats, and this improvement may have been mediated by increasing intestinal fluid secretion via CFTR chloride channel activation. Therefore, MNG is expected as a medicine of the treatment of constipation in patients taking opioids.


Assuntos
Analgésicos Opioides/toxicidade , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Constipação Intestinal/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
18.
BMC Complement Altern Med ; 15: 451, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26703073

RESUMO

BACKGROUND: Hydrarthrosis, which is associated with knee pain and limited range of motion, decreases the quality of life (QOL) of patients with osteoarthritis (OA). The Kampo medicine boiogito is prescribed for the treatment of knee OA with hydrarthrosis; however, its precise mechanisms of action remain unknown. The purposes of this study were to assess the pharmacological effects of boiogito and its mechanisms of action on joint effusion in rats with surgically induced OA. METHODS: A rat OA model was produced by transecting the anterior (cranial) cruciate ligament, medial collateral ligament, and medial meniscus in the right knee joints of 7-week-old female Wistar rats. The rats were given chow containing boiogito (1 or 2%) or indomethacin (0.002 %) for 4 weeks after surgical transection. Levels of interleukin-1ß (IL-1ß) and hyaluronic acid (HA) were measured by enzyme-linked immunosorbent assay. Knee joint pain was assessed using an incapacitance tester. Osmotic water permeability in cultured rabbit synovial cells was assessed using stopped-flow analysis. RESULTS: Increased synovial fluid volume and knee joint pain were observed in rats with surgically induced OA. In rats with OA, levels of IL-1ß and HA in the articular cavity were higher but concentration of HA in synovial fluid was lower than in sham-operated rats, suggesting excessive synovial fluid secretion. Administration of boiogito improved hydrarthrosis, IL-1ß, and HA concentrations and alleviated knee joint pain in rats with OA. Indomethacin reduced IL-1ß and knee joint pain but failed to improve hydrarthrosis or HA concentration in rats with OA. Osmotic water permeability in synovial cells, which is related to the function of the water channel aquaporin, was decreased by treatment with boiogito. CONCLUSION: Boiogito ameliorates the increased knee joint effusion in rats with OA by suppressing pro-inflammatory cytokine IL-1ß production in the articular cavity and regulating function of water transport in the synovium. The improvement of hydrarthrosis by boiogito results in the increased HA concentration in synovial fluid, thus reducing joint pain. Boiogito may be a clinically useful treatment of QOL in patients with OA with hydrarthrosis.


Assuntos
Hidrartrose/tratamento farmacológico , Medicina Kampo , Osteoartrite do Joelho/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Feminino , Humanos , Ácido Hialurônico/metabolismo , Hidrartrose/metabolismo , Interleucina-1beta/metabolismo , Osteoartrite do Joelho/metabolismo , Plantas Medicinais , Coelhos , Ratos , Ratos Wistar , Líquido Sinovial/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-26451159

RESUMO

Cancer cachexia, which is characterized by decreased food intake, weight loss and systemic inflammation, increases patient's morbidity and mortality. We previously showed that rikkunshito (RKT), a Japanese traditional herbal medicine (Kampo), ameliorated the symptoms of cancer cachexia through ghrelin signaling-dependent and independent pathways. To investigate other mechanisms of RKT action in cancer cachexia, we performed metabolome analysis of plasma in a rat model bearing the Yoshida AH-130 hepatoma. A total of 110 metabolites were detected in plasma and RKT treatment significantly altered levels of 23 of those metabolites in cachexia model rats. Among them, glucarate, which is known to have anticarcinogenic activity through detoxification of carcinogens via inhibition of ß-glucuronidase, was increased in plasma following administration of RKT. In our AH-130 ascites-induced cachexia rat model, administration of glucarate delayed onset of weight loss, improved muscle atrophy, and reduced ascites content. Additionally, glucarate reduced levels of plasma interferon-γ (IFN-γ) in tumor-bearing rats and was also found to suppress LPS-induced IFN-γ expression in splenocytes in vitro. These results suggest that glucarate has anti-inflammatory activity via a direct effect on immune host cells and suggest that RKT may also ameliorate inflammation partly through the elevation of glucarate in plasma.

20.
Front Pharmacol ; 5: 271, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25540621

RESUMO

Anorexia-cachexia syndrome develops during the advanced stages of various chronic diseases in which patients exhibit a decreased food intake, weight loss, and muscle tissue wasting. For these patients, this syndrome is a critical problem leading to an increased rate of morbidity and mortality. The present pharmacological therapies for treating anorexia-cachexia have limited effectiveness. The Japanese herbal medicine rikkunshito is often prescribed for the treatment of anorexia and upper gastrointestinal (GI) disorders. Thus, rikkunshito is expected to be beneficial for the treatment of patients with anorexia-cachexia syndrome. In this review, we summarize the effects of rikkunshito and its mechanisms of action on anorexia-cachexia. Persistent loss of appetite leads to a progressive depletion of body energy stores, which is frequently associated with cachexia. Consequently, regulating appetite and energy homeostasis is critically important for treating cachexia. Ghrelin is mainly secreted from the stomach, and it plays an important role in initiating feeding, controlling GI motility, and regulating energy expenditure. Recent clinical and basic science studies have demonstrated that the critical mechanism of rikkunshito underlies endogenous ghrelin activity. Interestingly, several components of rikkunshito target multiple gastric and central sites, and regulate the secretion, receptor sensitization, and degradation of ghrelin. Rikkunshito is effective for the treatment of anorexia, body weight loss, muscle wasting, and anxiety-related behavior. Furthermore, treatment with rikkunshito was observed to prolong survival in an animal model of cachexia. The use of a potentiator of ghrelin signaling, such as rikkunshito, may represent a novel approach for the treatment of anorexia-cachexia syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA