Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Int ; 69(2): 239-47, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16408112

RESUMO

Low concentrations of carbon monoxide (CO) can protect tissues against ischemia-reperfusion (I-R) injury. We have recently identified a novel class of compounds, CO-releasing molecules (CO-RMs), which exert important pharmacological activities by carrying and delivering CO to biological systems. Here, we examined the possible beneficial effects of CO liberated from CO-RMs on the damage inflicted by cold storage and I-R in isolated perfused kidneys. Hemodynamic and biochemical parameters as well as mitochondrial respiration were measured in isolated perfused rabbit kidneys that were previously flushed with CO-RMs and stored at 4 degrees C for 24 h. Two water-soluble CO-RMs were tested: (1) sodium boranocarbonate (CORM-A1), a boron-containing carbonate that releases CO at a slow rate, and (2) tricarbonylchloro(glycinato)ruthenium(II) (CORM-3), a transition metal carbonyl that liberates CO very rapidly in solution. Kidneys flushed with Celsior solution supplemented with CO-RMs (50 microM) and stored at 4 degrees C for 24 h displayed at reperfusion a significantly higher perfusion flow rate (PFR), glomerular filtration rate, and sodium and glucose reabsorption rates compared to control kidneys flushed with Celsior solution alone. Addition of 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor, prevented the increase in PFR mediated by CO-RMs. The respiratory control index from kidney mitochondria treated with CO-RMs was also markedly increased. Notably, renal protection was lost when kidneys were flushed with Celsior containing an inactive compound (iCO-RM), which had been deliberately depleted of CO. CO-RMs are effective therapeutic agents that deliver CO during kidney cold preservation and can be used to ameliorate vascular activity, energy metabolism and renal function at reperfusion.


Assuntos
Monóxido de Carbono/farmacologia , Rim/efeitos dos fármacos , Preservação de Órgãos , Traumatismo por Reperfusão/prevenção & controle , Animais , Monóxido de Carbono/metabolismo , Temperatura Baixa , Rim/irrigação sanguínea , Rim/fisiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxidiazóis/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Quinoxalinas/farmacologia , Coelhos
2.
Cryobiology ; 41(1): 72-87, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11017764

RESUMO

During liver preservation, ATP supplies become depleted, leading to loss of cellular homeostatic controls and a cascade of ensuing harmful changes. Anaerobic glycolysis is unable to prolong ATP production for a significant period because of metabolic blockade. Our aim was to promote glycolysis during liver cold hypoxia by supplying fructose as an additional substrate, compared to supplementation with an equivalent concentration of glucose. Porcine livers (two groups; n = 5 in each) were retrieved by clinical harvesting techniques and subjected to two cycles of cold hypoxia and oxygenated hypothermic reperfusion. In the second cycle of reperfusion, the perfusate was supplemented with either 10 mmol/L glucose (Group 1) or 10 mmol/L fructose (Group 2). During reperfusion in both groups, similar levels of ATP were detected by phosphorus magnetic resonance spectroscopy ((31)P MRS). However, during subsequent hypoxia, ATP was detected for much longer periods in the fructose-perfused group. The rate of ATP loss was sevenfold slower during hypoxia in the presence of fructose than in the presence of glucose (ATP consumption of -7.2 x 10(-3)% total (31)P for Group 1 versus -1.0 x 10(-3)% total (31)P for Group 2; P < 0. 001). The changes in ATP were mirrored by differences in other MRS-detectable intermediates; e.g., inorganic phosphate was significantly higher during subsequent hypoxia in Group 1 (45.7 +/- 2.7% total (31)P) than in Group 2 (33.7 +/- 1.1% total (31)P; P < 0. 01). High-resolution MRS of liver tissue extracts demonstrated that fructose was metabolized mainly via fructose 1-phosphate. We conclude that fructose supplied by brief hypothermic perfusion may improve the bioenergetic status of cold hypoxic livers by sustaining anaerobic glycolysis via a point of entry into the pathway that is different from that for glucose.


Assuntos
Trifosfato de Adenosina/metabolismo , Temperatura Baixa , Metabolismo Energético/efeitos dos fármacos , Frutose/farmacologia , Hipotermia Induzida , Fígado/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Preservação de Órgãos/métodos , Isótopos de Fósforo/análise , Anaerobiose , Animais , Biópsia , Hipóxia Celular , Frutose/metabolismo , Glicólise/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Oxigênio/farmacologia , Reperfusão , Projetos de Pesquisa , Suínos
3.
Clin Nephrol ; 51(2): 98-107, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10069645

RESUMO

BACKGROUND: Low density lipoprotein (LDL) may be involved in the pathogenesis of glomerulosclerosis and progressive renal dysfunction associated with atherosclerotic renal artery stenosis (RAS). This study was undertaken to investigate the effects of native (n-LDL) and oxidized LDL (ox-LDL) on renal vascular response and function in an isolated perfused rat kidney (IPRK) model. MATERIAL AND METHOD: IPRK model was used for the study at a constant pressure of 100 mm of Hg in the renal artery with continuous monitoring of pressure and renal perfusate flow. Urine and perfusate samples were collected to determine [14C] Inulin clearance and fractional reabsorption of sodium. To elucidate the role of nitric oxide (NO) urinary c-GMP, nitrate and nitrite excretion were measured and the responses to the NO synthase inhibitor N-monomethyl-L-arginine (LNMMA) and the NO donor Nitroso-glutathione (GSNO) were assessed. The effect of L-arginine supplementation and the role of reactive oxygen species were also studied by adding superoxide dismutase (SOD) and catalase. RESULTS: Ox-LDL but not n-LDL caused vasoconstriction in IPRK, as evidenced by a significant dose dependent reduction in renal perfusate flow. [14C] Inulin clearance and fractional reabsorption of sodium were reduced during ox-LDL infusion whereas no significant change occured with n-LDL. There was a significant decrease in urinary excretion of c-GMP during ox-LDL infusion. 10 microM LNMMA significantly increased and GSNO (10 microM) significantly diminished the vasoconstrictory effect of ox-LDL. The presence of L-arginine (100 & 500 microM) significantly decreased ox-LDL induced vasoconstriction. SOD (150 U/ml) and catalase (1200 U/ml) both had a significant inhibitory effect and the combination of SOD and catalase almost completely abolished the vasoconstriction due to ox-LDL. CONCLUSION: These results suggest that ox-LDL induced vasoconstriction in IPRK is mediated by decreased activity of NO probably due to inactivation of NO by reactive oxygen species. The free radical scavengers SOD, catalase and L-arginine provided protection against ox-LDL induced vasoconstriction in this model.


Assuntos
Arginina/farmacologia , Sequestradores de Radicais Livres/farmacologia , Lipoproteínas LDL/farmacologia , Artéria Renal/fisiologia , Vasoconstrição , Animais , Catalase/farmacologia , GMP Cíclico/urina , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores Enzimáticos/farmacologia , Taxa de Filtração Glomerular , Indometacina/farmacologia , Masculino , Nitratos/urina , Óxido Nítrico/fisiologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Nitritos/urina , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/farmacologia , ômega-N-Metilarginina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA