Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 190(1): 229-242, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31062165

RESUMO

Across resource quality gradients, primary consumers must regulate homeostasis and release of nutrients to optimize growth and fitness. Based primarily on internal body composition, the ecological stoichiometry theory (EST) offers a framework to generalize interspecific patterns of these responses, yet the predictions and underlying assumptions of EST remain poorly tested across many species. We used controlled laboratory feeding experiments to measure homeostasis, nutrient release, and growth across seven field-collected aquatic invertebrate detritivore taxa fed wide resource carbon:nitrogen (C:N) and carbon:phosphorus (C:P) gradients. We found that most invertebrates exhibited strict stoichiometric homeostasis (average 1/H = - 0.018 and 0.026 for C:N and C:P, respectively), supporting assumptions of EST. However, the stoichiometry of new tissue production during growth intervals (growth stoichiometry) deviated - 30 to + 54% and - 145 to + 74% from initial body C:N and C:P, respectively, and across species, growth stoichiometry was not correlated with initial body stoichiometry. Notably, smaller non- and hemimetabolous invertebrates exhibited low, decreasing growth C:N and C:P, whereas larger holometabolous invertebrates exhibited high, often increasing growth C:N and C:P. Despite predictions of EST, interspecific sensitivity of egestion stoichiometry and growth rates to the resource gradient were weakly related to internal body composition across species. While the sensitivity of these patterns differed across taxa, such differences carried a weak phylogenetic signal and were not well predicted by EST. Our findings suggest that traits beyond internal body composition, such as feeding behavior, selective assimilation, and ontogeny, are needed to generalize interspecific patterns in consumer growth and nutrient release across resource quality gradients.


Assuntos
Ecossistema , Invertebrados , Animais , Carbono , Ecologia , Homeostase , Nitrogênio , Fósforo , Filogenia
2.
Oecologia ; 177(3): 837-848, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25428786

RESUMO

Consumer growth determines the quantity of nutrients transferred through food webs. The extent to which leaf composition and consumer physiology interact to constrain consumer production is not well understood. For example, detritivore growth, and thus material transfer, could change with detrital elemental composition. Detrital type and associated microbial biofilms can mediate the amount and rate of detritus consumed and used towards growth. Detritivore body stoichiometry or the threshold elemental ratio, the food ratio resulting in optimal growth, may predict taxon-specific growth response to stoichiometrically-altered detritus. Empirical measures of detritivore growth responses across a range of detrital stoichiometry are rare. We fed a common detritivore, Tipula abdominalis, maple or oak leaves that spanned a gradient of carbon:phosphorus (C:P) to examine how leaf identity and C:P interact to influence growth, consumption, assimilation efficiencies, and post-assimilatory processes. Tipula abdominalis growth and consumption varied with leaf type and stoichiometry. Individuals fed oak grew faster and ate more compared to individuals fed maple. Individuals fed maple grew faster and ate more as leaf C:P decreased. All individuals lost most of the material they assimilated through respiration and excretion regardless of leaf type or leaf stoichiometry. Consumption and growth rates of T. abdominalis increased with maple nutrient enrichment, but not oak, indicating leaf-specific nutrient enrichment affected leaf palatability. Slightly non-homeostatic T. abdominalis C:P was maintained by varied consumption, carbon assimilation, and P excretion. Our study underlines the importance of how detritivore consumption and post-assimilatory processing could influence whole-stream material storage and nutrient cycling in detrital-based ecosystems.


Assuntos
Carbono/metabolismo , Dípteros/crescimento & desenvolvimento , Ecossistema , Comportamento Alimentar , Fósforo/metabolismo , Folhas de Planta/química , Árvores/química , Acer/química , Animais , Ciclo do Carbono , Dípteros/metabolismo , Cadeia Alimentar , Quercus/química
3.
Environ Toxicol Chem ; 23(12): 2941-9, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15648769

RESUMO

Dispersants are a preapproved chemical response agent for oil spills off portions of the U.S. coastline, including the Texas-Louisiana coast. However, questions persist regarding potential environmental risks of dispersant applications in nearshore regions (within three nautical miles of the shoreline) that support dense populations of marine organisms and are prone to spills resulting from human activities. To address these questions, a study was conducted to evaluate the relative toxicity of test media prepared with dispersant, weathered crude oil, and weathered crude oil plus dispersant. Two fish species, Cyprinodon variegatus and Menidia beryllina, and one shrimp species, Americamysis bahia (formerly Mysidopsis bahia), were used to evaluate the relative toxicity of the different media under declining and continuous exposure regimes. Microbial toxicity was evaluated using the luminescent bacteria Vibrio fisheri. The data suggested that oil media prepared with a chemical dispersant was equal to or less toxic than the oil-only test medium. Data also indicated that continuous exposures to the test media were generally more toxic than declining exposures. The toxicity of unweathered crude oil with and without dispersant was also evaluated using Menidia beryllina under declining exposure conditions. Unweathered oil-only media were dominated by soluble hydrocarbon fractions and found to be more toxic than weathered oil-only media in which colloidal oil fractions dominated. Total concentrations of petroleum hydrocarbons in oil-plus-dispersant media prepared with weathered and unweathered crude oil were both dominated by colloidal oil and showed no significant difference in toxicity. Analysis of the toxicity data suggests that the observed toxicity was a function of the soluble crude oil components and not the colloidal oil.


Assuntos
Lipídeos/toxicidade , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/metabolismo , Animais , Coloides , Crustáceos/efeitos dos fármacos , Hidrocarbonetos/análise , Hidrocarbonetos/toxicidade , Peixes Listrados , Dose Letal Mediana , Nível de Efeito Adverso não Observado , Smegmamorpha , Solubilidade , Volatilização , Tempo (Meteorologia)
4.
Mar Pollut Bull ; 47(9-12): 406-14, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12899886

RESUMO

The Conrad Blucher Institute for Surveying and Science (Texas A&M University--Corpus Christi) has conducted numerous petroleum experiments at the Shoreline Environmental Research Facility (Corpus Christi, Texas, USA). The meso-scale facility has multiple wave tanks, permitting some control in experimental design of the investigations, but allowing for real-world conditions. This paper outlines the evolution of a materials balance approach in conducting petroleum experiments at the facility. The first attempt at a materials balance was during a 1998 study on the fate/effects of dispersant use on crude oil. Both water column and beach sediment samples were collected. For the materials balance, the defined environmental compartments for oil accumulation were sediments, water column, and the water surface, while the discharge from the tanks was presumed to be the primary sink. The "lessons learned" included a need to quantify oil adhesion to the tank surfaces. This was resolved by adhering strips of the polymer tank lining to the tank sides that could be later removed and extracted for oil. Also, a protocol was needed to quantify any floating oil on the water surface. A water surface (oil slick) quantification protocol was developed, involving the use of solid-phase extraction disks. This protocol was first tested during a shoreline cleaner experiment, and later refined in subsequent dispersant effectiveness studies. The effectiveness tests were designed to simulate shallow embayments which created the need for additional adjustments in the tanks. Since dispersant efficacy is largely affected by hydrodynamics, it was necessary to scale the hydrodynamic conditions of the tanks to those expected in our prototype system (Corpus Christi Bay, Texas). The use of a scaled model permits the experiment to be reproduced and/or evaluated under different conditions. To minimize wave reflection in the tank, a parabolic wave dissipater was built. In terms of materials balance, this design reduced available surface area as a sink for oil adsorption.


Assuntos
Modelos Teóricos , Petróleo , Poluentes da Água/análise , Acidentes , Monitoramento Ambiental , Desenho de Equipamento , Previsões , Sedimentos Geológicos/química , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA