Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroradiol J ; : 19714009231212375, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924213

RESUMO

The T2-Fluid-Attenuated Inversion Recovery (T2-FLAIR) mismatch sign is a radiogenomic marker that is easily discernible on preoperative conventional MR imaging. Application of strict criteria (adult population, cerebral hemisphere location, and classic imaging morphology) permits the noninvasive preoperative diagnosis of isocitrate dehydrogenase (IDH)-mutant 1p/19q-non-codeleted diffuse astrocytoma with near-perfect specificity, albeit with variably low sensitivity. This leads to improved preoperative planning and patient counseling. More recent research has shown that the application of less strict criteria compromises the near-perfect specificity of the sign but remains adequate for ruling out IDH-wildtype (glioblastoma) phenotype, which bears a far grimmer prognosis compared to IDH-mutant diffuse astrocytic disease. In this review, we elaborate on the various definitions of the T2-FLAIR mismatch sign present in the literature, illustrate these with images obtained at a comprehensive cancer center, discuss the potential of the mismatch sign for application to certain pediatric-type brain tumors, namely dysembryoplastic neuroepithelial tumor and diffuse midline glioma, and elaborate upon the clinical, histologic, and molecular associations of the T2-FLAIR mismatch sign as recognized to date. Finally, the sign's correlates in diffusion- and perfusion-weighted imaging are presented, and opportunities to further maximize the diagnostic and prognostic applications of the sign in the context of the 2021 revision of the WHO Classification of Central Nervous System Tumors are discussed.

2.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35316217

RESUMO

BACKGROUNDImmune cell profiling of primary and metastatic CNS tumors has been focused on the tumor, not the tumor microenvironment (TME), or has been analyzed via biopsies.METHODSEn bloc resections of gliomas (n = 10) and lung metastases (n = 10) were analyzed via tissue segmentation and high-dimension Opal 7-color multiplex imaging. Single-cell RNA analyses were used to infer immune cell functionality.RESULTSWithin gliomas, T cells were localized in the infiltrating edge and perivascular space of tumors, while residing mostly in the stroma of metastatic tumors. CD163+ macrophages were evident throughout the TME of metastatic tumors, whereas in gliomas, CD68+, CD11c+CD68+, and CD11c+CD68+CD163+ cell subtypes were commonly observed. In lung metastases, T cells interacted with CD163+ macrophages as dyads and clusters at the brain-tumor interface and within the tumor itself and as clusters within the necrotic core. In contrast, gliomas typically lacked dyad and cluster interactions, except for T cell CD68+ cell dyads within the tumor. Analysis of transcriptomic data in glioblastomas revealed that innate immune cells expressed both proinflammatory and immunosuppressive gene signatures.CONCLUSIONOur results show that immunosuppressive macrophages are abundant within the TME and that the immune cell interactome between cancer lineages is distinct. Further, these data provide information for evaluating the role of different immune cell populations in brain tumor growth and therapeutic responses.FUNDINGThis study was supported by the NIH (NS120547), a Developmental research project award (P50CA221747), ReMission Alliance, institutional funding from Northwestern University and the Lurie Comprehensive Cancer Center, and gifts from the Mosky family and Perry McKay. Performed in the Flow Cytometry & Cellular Imaging Core Facility at MD Anderson Cancer Center, this study received support in part from the NIH (CA016672) and the National Cancer Institute (NCI) Research Specialist award 1 (R50 CA243707). Additional support was provided by CCSG Bioinformatics Shared Resource 5 (P30 CA046592), a gift from Agilent Technologies, a Research Scholar Grant from the American Cancer Society (RSG-16-005-01), a Precision Health Investigator Award from University of Michigan (U-M) Precision Health, the NCI (R37-CA214955), startup institutional research funds from U-M, and a Biomedical Informatics & Data Science Training Grant (T32GM141746).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Pulmonares , Neoplasias Encefálicas/patologia , Sistema Nervoso Central/metabolismo , Glioblastoma/patologia , Humanos , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral , Estados Unidos
3.
Chin J Cancer ; 30(3): 163-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21352693

RESUMO

The aggressive and invasive nature of brain tumors has hampered progress in the design and implementation of efficacious therapies. The recent success of targeted therapies in other tumor types makes this an attractive area for research yet complicating matters is the ability of brain tumors to circumvent the targeted pathways to develop drug resistance. Effective therapies will likely need to target more than one signaling pathway or target multiple nodes within a given pathway. Key to identifying these targets is the elucidation of the driver and passenger molecules within these pathways. Animal models provide a useful tool with many advantages in the study of these pathways. These models provide a means to dissect the critical components of tumorigenesis, as well as serve as agents for preclinical testing. This review focuses on the use of the RCAS/tv-a mouse model of brain tumors and describes their unique ability to provide insight into the role of oncogene cooperation in tumor development and progression.


Assuntos
Neoplasias Encefálicas/genética , Modelos Animais de Doenças , Glioma/genética , Oncogenes/genética , Animais , Vírus da Leucose Aviária/genética , Proteínas Aviárias/genética , Neoplasias Encefálicas/patologia , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Vetores Genéticos , Glioma/patologia , Humanos , Camundongos , Camundongos Transgênicos , Receptores Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA