Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 44(5-6): 119-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070790

RESUMO

The causal relationship between exposure to power-frequency magnetic fields (MFs) and childhood leukemia has long been controversial. The most common type of childhood leukemia is acute B-lymphoblastic leukemia caused by abnormal proliferation of B cells in the early differentiation process. Here, we focused on B-cell early differentiation and aimed to evaluate the effects of exposing cells to power-frequency MF. First, we optimized an in vitro differentiation protocol of human hematopoietic stem/progenitor cells (HSPCs) to B-cell lineages. Following validation of the responsiveness of the protocol to additional stimulations and the uniformity of the experimental conditions, human HSPCs were continuously exposed to 300 mT of 50 Hz MF for 35 days of the differentiation process. These experiments were performed in a blinded manner. The percentages of myeloid or lymphoid cells and their degree of differentiation from pro-B to immature-B cells in the MF-exposed group showed no significant changes compared with those in the control group. Furthermore, the expression levels of recombination-activating gene (RAG)1 and RAG2 in the B cells were also similar to those in the control group. These results indicate that exposure to 50 Hz MF at 300 mT does not affect the human B-cell early differentiation from HSPCs. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Campos Magnéticos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Diferenciação Celular , Células-Tronco
2.
Bioelectromagnetics ; 43(3): 174-181, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35132646

RESUMO

The causal association between exposure to power-frequency magnetic fields (MFs) and childhood leukemia has been under discussion. Although evidence from experimental studies is required for a conclusion to be reached, only a few studies have focused on the effects of MF exposure on the human hematopoietic system directly related to leukemogenesis. Here, we established an in vitro protocol to simulate the differentiation of human mesodermal cells to hematopoietic stem progenitor cells (HSPCs) using human-induced pluripotent stem cells. Furthermore, we introduced MF in the protocol to study the effects of exposure. After a continuous exposure to 0-300 mT of 50-Hz MFs during the differentiation process, the efficiency of differentiation of mesodermal cells into HSPCs was analyzed in a single-blinded manner. The percentage of emerged HSPCs from mesodermal cells in groups exposed to 50-Hz MFs indicated a lack of significant changes compared with those in the sham-exposed group. These results suggest that exposure to 50-Hz MFs up to 300 mT does not affect the differentiation of human mesodermal cells to HSPCs, which may be involved in the initial process of leukemogenesis. © 2022 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Criança , Humanos , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA