Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 164(6): 1691-1695, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30968213

RESUMO

Potato virus Y (PVY) is the most common virus infecting potato worldwide. We analysed potato tuber PVY infections from the major Israeli growing region in 2014-2017. Isolates were characterized by multiplex PCR according to Chikh-Ali et al. (Plant Disease 97, 1370, 2013), whose primers were not fully compatible with the Israeli isolates. New primers were designed for a multiplex PCR assay to differentiate the Israeli isolates. Three recombinant strains were observed: PVYNTNa (72% of the isolates), PVYNWi (24%) and PVYSyr-III (found only in 2015). The archetypal PVYO strain was found only once. The classical PVY strains have recently been displaced by recombinant forms, with PVYNTNa dominating. The Israeli isolates appear very similar to those of Europe (the seed tuber source), except for PVYSyr-III.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Potyvirus/isolamento & purificação , Solanum tuberosum/virologia , Primers do DNA/genética , Genoma Viral , Israel , Doenças das Plantas/virologia , Potyvirus/genética , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Análise de Sequência de RNA
2.
J Exp Bot ; 67(18): 5495-5508, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27580624

RESUMO

The potato tuber is a swollen underground stem that can sprout under dark conditions. Sprouting initiates in the tuber apical bud (AP), while lateral buds (LTs) are repressed by apical dominance (AD). Under conditions of lost AD, removal of tuber LTs showed that they partially inhibit AP growth only at the AD stage. Detached buds were inhibited by exogenous application of naphthaleneacetic acid (NAA), whereas 6-benzyladenine (6-BA) and gibberellic acid (GA3) induced bud burst and elongation, respectively. NAA, applied after 6-BA or GA3, nullified the latters' growth-stimulating effect in both the AP and LTs. GA3 applied to the fifth-position LT was transported mainly to the tuber's AP. GA3 treatment also resulted in increased indole-3-acetic acid (IAA) concentration and cis-zeatin O-glucoside in the AP. In a tuber tissue strip that included two or three buds connected by the peripheral vascular system, treatment of a LT with GA3 affected only the AP side of the strip, suggesting that the AP is the strongest sink for GA3, which induces its etiolated elongation. Dipping etiolated sprouts in labeled GA3 showed specific accumulation of the signal in the AP. Transcriptome analysis of GA3's effect showed that genes related to the cell cycle, cell proliferation, and hormone transport are up-regulated in the AP as compared to the LT. Sink demand for metabolites is suggested to support AD in etiolated stem growth by inducing differential gene expression in the AP.


Assuntos
Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Compostos de Benzil/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/farmacologia , Glucosídeos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Tubérculos/efeitos dos fármacos , Tubérculos/crescimento & desenvolvimento , Purinas/farmacologia , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento
3.
Adv Virus Res ; 84: 209-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22682169

RESUMO

Potatoes are an important crop in Mediterranean countries both for local consumption and for export to other countries, mainly during the winter. Many Mediterranean countries import certified seed potato in addition to their own seed production. The local seeds are mainly used for planting in the autumn and winter, while the imported seed are used for early and late spring plantings. Potato virus Y is the most important virus in Mediterranean countries, present mainly in the autumn plantings. The second important virus is Potato leafroll virus, though in recent years its importance seems to be decreasing. Potato virus X, Potato virus A, Potato virus S, Potato virus M, and the viroid, Potato spindle tuber viroid, were also recorded in several Mediterranean countries. For each virus the main strains, transmission, characterization of the virus particle, its genome organization, detection, and control methods including transgenic approaches will be discussed.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Solanum tuberosum/virologia , Região do Mediterrâneo , Doenças das Plantas/prevenção & controle
4.
Microbiology (Reading) ; 157(Pt 5): 1500-1508, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21372093

RESUMO

HsvG and HsvB, two paralogous type III effectors of the gall-forming bacteria Pantoea agglomerans pv. gypsophilae and P. agglomerans pv. betae, determine host specificity on gypsophila and beet, respectively. They were previously shown to be DNA-binding proteins imported into host and non-host nuclei and might act as transcriptional activators. Sequence analysis of these effectors did not detect canonical nuclear localization signals (NLSs), but two basic amino acid clusters designated putative NLS1 and NLS2 were detected in their N-terminal and C-terminal regions, respectively. pNIA assay for nuclear import in yeast and bombardment of melon leaves with each of the NLSs fused to a 2xYFP reporter indicated that putative NLS1 and NLS2 were functional in transport of HsvG into the nucleus. A yeast two-hybrid assay showed that HsvB, HsvG, putative NLS1, putative NLS2, HsvG converted into HsvB, or HsvB converted into HsvG by exchanging the repeat domain, all interacted with AtKAP-α and importin-α3 of Arabidopsis thaliana. Deletion analysis of the NLS domains in HsvG suggested that putative NLS1 or NLS2 were required for pathogenicity on gypsophila cuttings and presumably for import of HsvG into the nucleus. This study demonstrates the presence of two functional NLSs in the type III effectors HsvG and HsvB.


Assuntos
Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear , Pantoea/metabolismo , Tumores de Planta/microbiologia , Transativadores/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Beta vulgaris/microbiologia , Caryophyllaceae/microbiologia , Núcleo Celular/química , Núcleo Celular/genética , Dados de Sequência Molecular , Pantoea/química , Pantoea/genética , Pantoea/patogenicidade , Estrutura Terciária de Proteína , Transporte Proteico , Transativadores/química , Transativadores/genética
5.
Biomacromolecules ; 7(3): 937-44, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16529434

RESUMO

Intercellular adhesion strengthening, a phenomenon that compromises the texture and the edible quality of potatoes (Solanum tuberosum L.), has been induced reproducibly by exposure to low-pH acetic acid solutions under tissue culture conditions. The resulting parenchyma tissues have been examined by solid-state nuclear magnetic resonance (NMR) in order to characterize the biopolymer(s) thought to be associated with this syndrome. Cross polarization-magic angle spinning (CPMAS) (13)C NMR has been used to establish the presence of a polyphenol-suberin-like aromatic-aliphatic polyester within an abundant cell wall polysaccharide matrix in potato tubers that exhibit hardening due to strengthened intercellular adhesion. Dipolar dephasing and CP chemical shift anisotropy experiments suggest that the aromatic domain is composed primarily of guaiacyl and sinapyl groups. Two-dimensional wide-line separation experiments show that the biopolymer associated with parenchyma hardening contains rigid polysaccharide cell walls and mobile aliphatic long-chain fatty acids; (1)H spin diffusion experiments show that these flexible aliphatic chains are proximal to both the phenolics and a subpopulation of the cell wall polysaccharides. Finally, high-resolution MAS NMR of parenchyma samples swelled in DMSO in conjunction with two-dimensional through-bond and through-space NMR spectroscopy provides evidence for covalent linkages among the polysaccharide, phenolic, and aliphatic domains of the intercellular adhesion-strengthening biopolymer in potato parenchyma tissue.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Parede Celular/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Poliésteres/química , Carbono/química , Adesão Celular , Flavonoides/química , Fenóis/química , Polifenóis , Polissacarídeos/química , Estrutura Terciária de Proteína , Solanum tuberosum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA