Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Endocrinol ; 235(2): 111-122, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28851749

RESUMO

Nesfatin-1 is a bioactive polypeptide expressed both in the brain and peripheral tissues and involved in the control of energy balance by reducing food intake. Central administration of nesfatin-1 significantly increases energy expenditure, as demonstrated by a higher dry heat loss; yet, the mechanisms underlying the thermogenic effect of central nesfatin-1 remain unknown. Therefore, in this study, we sought to investigate whether the increase in energy expenditure induced by nesfatin-1 is mediated by the central melanocortin pathway, which was previously reported to mediate central nesfatin-1´s effects on feeding and numerous other physiological functions. With the application of direct calorimetry, we found that intracerebroventricular nesfatin-1 (25 pmol) treatment increased dry heat loss and that this effect was fully blocked by simultaneous administration of an equimolar dose of the melanocortin 3/4 receptor antagonist, SHU9119. Interestingly, the nesfatin-1-induced increase in dry heat loss was positively correlated with body weight loss. In addition, as assessed with thermal imaging, intracerebroventricular nesfatin-1 (100 pmol) increased interscapular brown adipose tissue (iBAT) as well as tail temperature, suggesting increased heat production in the iBAT and heat dissipation over the tail surface. Finally, nesfatin-1 upregulated pro-opiomelanocortin and melanocortin 3 receptor mRNA expression in the hypothalamus, accompanied by a significant increase in iodothyronine deiodinase 2 and by a nonsignificant increase in uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha mRNA in the iBAT. Overall, we clearly demonstrate that nesfatin-1 requires the activation of the central melanocortin system to increase iBAT thermogenesis and, in turn, overall energy expenditure.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Melanocortinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Termogênese/fisiologia , Animais , Biomarcadores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação a DNA/genética , Orelha , Hipotálamo/metabolismo , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Proteínas do Tecido Nervoso/genética , Nucleobindinas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Cauda , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Endocrinology ; 158(6): 1977-1984, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368510

RESUMO

3-Iodothyronamine (3-T1AM) is an endogenous thyroid hormone (TH)-derived metabolite that induces severe hypothermia in mice after systemic administration; however, the underlying mechanisms have remained enigmatic. We show here that the rapid 3-T1AM-induced loss in body temperature is a consequence of peripheral vasodilation and subsequent heat loss (e.g., over the tail surface). The condition is subsequently intensified by hypomotility and a lack of brown adipose tissue activation. Although the possible 3-T1AM targets trace amine-associated receptor 1 or α2a-adrenergic receptor were detected in tail artery and aorta respectively, myograph studies did not show any direct effect of 3-T1AM on vasodilation, suggesting that its actions are likely indirect. Intracerebroventricular application of 3-T1AM, however, replicated the phenotype of tail vasodilation and body temperature decline and led to neuronal activation in the hypothalamus, suggesting that the metabolite causes tail vasodilation through a hypothalamic signaling pathway. Consequently, the 3-T1AM response constitutes anapyrexia rather than hypothermia and closely resembles the heat-stress response mediated by hypothalamic temperature-sensitive neurons. Our results thus underline the well-known role of the hypothalamus as the body's thermostat and suggest an additional molecular link between TH signaling and the central control of body temperature.


Assuntos
Encéfalo/fisiologia , Cauda/irrigação sanguínea , Tironinas/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Cauda/efeitos dos fármacos , Tironinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA