Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 644: 123305, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572857

RESUMO

The present study aims to utilize green synthesis to fabricate stimuli-responsive, smart, quince/pectin cross-linked hydrogel sponges for the pH-regulated conveyance of domperidone. The designed hydrogel sponges were evaluated for a sol-gel fraction (%), swelling studies and kinetics, drug loading (%), electrolyte-responsive character, scanning electron microscopy (SEM), thermal analysis, drug-excipient compatibility studies (FTIR), X-ray diffraction (XRD) analysis, mechanical testing, in-vitro drug release studies, and acute oral toxicity studies. The drug loading (%) ranged from 67 to 85%. Hydrogel sponges displayed pH-responsive swelling potential, with optimum swelling in a phosphate buffer (pH 7.4) and insignificant swelling in an acidic buffer of pH 1.2. The prepared hydrogel sponges displayed second-order swelling dynamics. The FTIR data revealed the successful fabrication of the hydrogel sponges with the primary drug peaks remaining unchanged, demonstrating excipients-drug compatibility. SEM confirmed the rough, porous surface of hydrogel sponges with numerous cracks. XRD measurements revealed the transformation of the crystalline nature of domperidone into an amorphous one within the developed hydrogel sponges. Dissolution studies revealed little domperidone release in an acidic environment. However, hydrogel sponges exhibited release up to 10 h in phosphate buffer.The sponge's non-toxic or biocompatible character was confirmed through toxicological studies. Thus, the finding indicates that quince/pectin cross-linked hydrogel sponges are durable enough to deliver the domperidone to the gut for a longer time.


Assuntos
Hidrogéis , Rosaceae , Hidrogéis/química , Domperidona , Pectinas , Excipientes , Concentração de Íons de Hidrogênio , Fosfatos
2.
Sci Rep ; 12(1): 13102, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907916

RESUMO

A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55-66.13 nm), homogenous distribution (PDI of 0.207-0.249), and negatively charged Zeta potential (- 13.4 to - 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.


Assuntos
Nanocápsulas , Rosmarinus , Animais , Antioxidantes/farmacologia , Hexanos , Lipídeos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Rosmarinus/química
3.
Polymers (Basel) ; 13(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073772

RESUMO

Jojoba is a widely used medicinal plant that is cultivated worldwide. Its seeds and oil have a long history of use in folklore to treat various ailments, such as skin and scalp disorders, superficial wounds, sore throat, obesity, and cancer; for improvement of liver functions, enhancement of immunity, and promotion of hair growth. Extensive studies on Jojoba oil showed a wide range of pharmacological applications, including antioxidant, anti-acne and antipsoriasis, anti-inflammatory, antifungal, antipyretic, analgesic, antimicrobial, and anti-hyperglycemia activities. In addition, Jojoba oil is widely used in the pharmaceutical industry, especially in cosmetics for topical, transdermal, and parenteral preparations. Jojoba oil also holds value in the industry as an anti-rodent, insecticides, lubricant, surfactant, and a source for the production of bioenergy. Jojoba oil is considered among the top-ranked oils due to its wax, which constitutes about 98% (mainly wax esters, few free fatty acids, alcohols, and hydrocarbons). In addition, sterols and vitamins with few triglyceride esters, flavonoids, phenolic and cyanogenic compounds are also present. The present review represents an updated literature survey about the chemical composition of jojoba oil, its physical properties, pharmacological activities, pharmaceutical and industrial applications, and toxicity.

4.
AAPS PharmSciTech ; 9(3): 878-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18654864

RESUMO

The purpose of this study is to formulate in situ implants containing doxycycline hydrochloride and/or secnidazole that could be used in the treatment of periodontitis by direct periodontal intrapocket administration. Biodegradable polymers [poly (lactide) (PLA) and poly (lactide-co-glycolide) (PLGA)], each polymer in two concentrations 25%w/w, 35%w/w were used to formulate the in situ implants. The rheological behavior, in vitro drug release and the antimicrobial activity of the prepared implants were evaluated. Increasing the concentration of each polymer increases the viscosity and decreases the percent of the drugs released after 24 h. PLA implants showed a slower drugs release rate than PLGA implants in which the implants composed of 25% PLGA showed the fastest drugs release. The in vitro drug release and antimicrobial activity results were compared with results of Atridox. Results revealed that the pharmaceutical formulation based on 25% PLGA containing secnidazole and doxycycline hydrochloride has promising activity in treating periodontitis in comparison with Atridox.


Assuntos
Implantes Absorvíveis , Doxiciclina/administração & dosagem , Ácido Láctico/administração & dosagem , Metronidazol/análogos & derivados , Periodontite/tratamento farmacológico , Poliésteres/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Química Farmacêutica , Doxiciclina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Implantes de Medicamento , Farmacorresistência Bacteriana , Fusobactérias/efeitos dos fármacos , Fusobactérias/isolamento & purificação , Humanos , Ácido Láctico/química , Metronidazol/administração & dosagem , Metronidazol/química , Peptostreptococcus/efeitos dos fármacos , Peptostreptococcus/isolamento & purificação , Periodontite/microbiologia , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porphyromonas/efeitos dos fármacos , Porphyromonas/isolamento & purificação , Prevotella/efeitos dos fármacos , Prevotella/isolamento & purificação , Streptococcus/efeitos dos fármacos , Streptococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA