Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 161: 1-10, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342421

RESUMO

In this work we report a parallel application of both docking- and shape-based virtual screening (VS) methods, followed by Molecular Dynamics simulations (MDs), for discovering new compounds able to inhibit the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) RNA-dependent DNA polymerase activity. Specifically, we screened more than 143000 natural compounds commercially available in the ZINC database against the best five RT crystallographic models, taking into account the five approved NNRTIs as query compounds. As a result, 20 hit molecules were selected and tested on biochemical assays for the inhibition of the RNA dependent DNA polymerase RT function and, among them, an indoline pyrrolidine (hit1), an indonyl piperazine (hit2) and an indolyl indolinone (hit3) derivatives were identified as novel non-nucleoside RT inhibitors in the low micromolar range.


Assuntos
Produtos Biológicos/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Produtos Biológicos/química , Avaliação Pré-Clínica de Medicamentos , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Dinâmica Molecular , Inibidores da Transcriptase Reversa/química
2.
Front Immunol ; 9: 1903, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174672

RESUMO

Estrogens, in particular 17ß-estradiol (E2), have a strong influence on the immune system and also affect pathological conditions such as autoimmune diseases. The biological effects of E2 are mediated by two intracellular receptors, i.e., estrogen receptor (ER)α and ERß, which function as ligand-activated nuclear transcription factors producing genomic effects. Immune cells express both ERα and ERß that play a complex role in modulating inflammation. Phytoestrogens display estrogen-like effects. Among them, silibinin, the major active constituent of silymarin extracted by the milk thistle (Silybum marianum), has been suggested to have an ERß selective binding. Silibinin is known to have anti-inflammatory, hepatoprotective, and anticarcinogenic effects; however, the role of silibinin in modulating human immune responses and its impact on autoimmunity remains unclear. Aim of this study was to dissect the ability of the ERß natural ligand silibinin to modulate T cell immunity, taking into account possible differences between females and males, and to define its possible role as therapeutic tool in immune-mediated diseases. To this purpose, female and age-matched male healthy subjects and patients with active rheumatoid arthritis (RA) were recruited. We evaluated the ability of silibinin to modulate ERß expression in T lymphocytes and its effects on T cell functions (i.e., apoptosis, proliferation, and cytokine production). We also analyzed whether silibinin was able to modulate the expression of microRNA-155 (miR-155), which strongly contributes to the pathogenesis of RA driving aberrant activation of the immune system. We demonstrated that silibinin upregulated ERß expression, induced apoptosis, inhibited proliferation, and reduced expression of the pro-inflammatory cytokines IL-17 and TNF-α, through ERß binding, in T lymphocytes from female and male healthy donors. We obtained similar results in T lymphocytes from patients with active RA in term of apoptosis, proliferation, and cytokine production. In addition, we found that silibinin acted as an epigenetic modifier, down-modulating the expression of miR-155. In conclusion, our data demonstrated an immunosuppressive role of silibinin, supporting its application in the treatment of autoimmune diseases as drug, but also as dietary nutritional supplement, opening new perspective in the field of autoimmune disease management.


Assuntos
Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Receptor beta de Estrogênio/agonistas , Imunomodulação/efeitos dos fármacos , Imunossupressores/farmacologia , Silibina/farmacologia , Idoso , Apoptose/efeitos dos fármacos , Artrite Reumatoide/patologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade , Imunossupressores/uso terapêutico , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Silibina/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
PLoS One ; 13(5): e0195932, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768500

RESUMO

Inflammatory breast cancer (IBC) is a rare and aggressive presentation of invasive breast cancer with a 62% to 68% 5-year survival rate. It is the most lethal form of breast cancer, and early recognition and treatment is important for patient survival. Like non-inflammatory breast cancer, IBC comprises multiple subtypes, with the triple-negative subtype being overrepresented. Although the current multimodality treatment regime of anthracycline- and taxane-based neoadjuvant therapy, surgery, and radiotherapy has improved the outcome of patients with triple-negative IBC, overall survival continues to be worse than in patients with non-inflammatory locally advanced breast cancer. Translation of new therapies into the clinics to successfully treat IBC has been poor, in part because of the lack of in vitro preclinical models that can accurately predict the response of the original tumor to therapy. We report the generation of a preclinical IBC patient-derived xenograft (PDX)-derived ex vivo (PDXEx) model and show that it closely replicates the tissue architecture of the original PDX tumor harvested from mice. The gene expression profile of our IBC PDXEx model had a high degree of correlation to that of the original tumor. This suggests that the process of generating the PDXEx model did not significantly alter the molecular signature of the original tumor. We demonstrate a high degree of similarity in drug response profile between a PDX mouse model and our PDXEx model generated from the same original PDX tumor tissue and treated with the same panel of drugs, indicating that our PDXEx model had high predictive value in identifying effective tumor-specific therapies. Finally, we used our PDXEx model as a platform for a robotic-based high-throughput drug screen of a 386-drug anti-cancer compound library. The top candidates identified from this drug screen all demonstrated greater therapeutic efficacy than the standard-of-care drugs used in the clinic to treat triple-negative IBC, doxorubicin and paclitaxel. Our PDXEx model is simple, and we are confident that it can be incorporated into a PDX mouse system for use as a first-pass screening platform. This will permit the identification of effective tumor-specific therapies with high predictive value in a resource-, time-, and cost-efficient manner.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Neoplasias Inflamatórias Mamárias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Neoplasias Inflamatórias Mamárias/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA