Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 138(22): 2173-2184, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34086880

RESUMO

End-stage renal disease (ESRD) patients on chronic hemodialysis have repeated blood exposure to artificial surfaces that can trigger clot formation within the hemodialysis circuit. Dialyzer clotting can lead to anemia despite erythropoietin and iron supplementation. Unfractionated heparin prevents clotting during hemodialysis, but it is not tolerated by all patients. Although heparin-free dialysis is performed, intradialytic blood entrapment can be problematic. To address this issue, we performed a randomized, double-blind, phase 2 study comparing AB023, a unique antibody that binds factor XI (FXI) and blocks its activation by activated FXII, but not by thrombin, to placebo in 24 patients with ESRD undergoing heparin-free hemodialysis. Patients were randomized to receive a single predialysis dose of AB023 (0.25 or 0.5 mg/kg) or placebo in a 2:1 ratio, and safety and preliminary efficacy were compared with placebo and observations made prior to dosing within each treatment arm. AB023 administration was not associated with impaired hemostasis or other drug-related adverse events. Occlusive events requiring hemodialysis circuit exchange were less frequent and levels of thrombin-antithrombin complexes and C-reactive protein were lower after AB023 administration compared with data collected prior to dosing. AB023 also reduced potassium and iron entrapment in the dialyzers, consistent with less blood accumulation within the dialyzers. We conclude that despite the small sample size, inhibition of contact activation-induced coagulation with AB023 was well tolerated and reduced clotting within the dialyzer. This trial was registered at www.clinicaltrials.gov as #NCT03612856.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antitrombinas/uso terapêutico , Falência Renal Crônica/terapia , Diálise Renal/métodos , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Antitrombinas/efeitos adversos , Método Duplo-Cego , Fator XI/antagonistas & inibidores , Feminino , Hemostasia/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Efeito Placebo , Diálise Renal/efeitos adversos , Trombose/etiologia , Trombose/prevenção & controle
2.
Blood Rev ; 32(6): 433-448, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30075986

RESUMO

Direct oral anticoagulants (DOACs) are small molecule inhibitors of the coagulation proteases thrombin and factor Xa that demonstrate comparable efficacy to warfarin for several common indications, while causing less serious bleeding. However, because their targets are required for the normal host-response to bleeding (hemostasis), DOACs are associated with therapy-induced bleeding that limits their use in certain patient populations and clinical situations. The plasma contact factors (factor XII, factor XI, and prekallikrein) initiate blood coagulation in the activated partial thromboplastin time assay. While serving limited roles in hemostasis, pre-clinical and epidemiologic data indicate that these proteins contribute to pathologic coagulation. It is anticipated that drugs targeting the contact factors will reduce risk of thrombosis with minimal impact on hemostasis. Here, we discuss the biochemistry of contact activation, the contributions of contact factors in thrombosis, and novel antithrombotic agents targeting contact factors that are undergoing pre-clinical and early clinical testing.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Coagulação Sanguínea , Animais , Fatores de Coagulação Sanguínea/genética , Transtornos de Proteínas de Coagulação/diagnóstico , Transtornos de Proteínas de Coagulação/epidemiologia , Transtornos de Proteínas de Coagulação/etiologia , Transtornos de Proteínas de Coagulação/terapia , Terapia Combinada , Avaliação Pré-Clínica de Medicamentos , Hemostasia , Humanos , Terapia de Alvo Molecular , Ligação Proteica , Trombina/metabolismo
3.
Biochem J ; 367(Pt 1): 49-56, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12084014

RESUMO

Human factor XI, a plasma glycoprotein required for normal haemostasis, is a homodimer (160 kDa) formed by a single interchain disulphide bond linking the Cys-321 of each Apple 4 domain. Bovine, porcine and murine factor XI are also disulphide-linked homodimers. Rabbit factor XI, however, is an 80 kDa polypeptide on non-reducing SDS/PAGE, suggesting that rabbit factor XI exists and functions physiologically either as a monomer, as does prekallikrein, a structural homologue to factor XI, or as a non-covalent homodimer. We have investigated the structure and function of rabbit factor XI to gain insight into the relation between homodimeric structure and factor XI function. Characterization of the cDNA sequence of rabbit factor XI and its amino acid translation revealed that in the rabbit protein a His residue replaces the Cys-321 that forms the interchain disulphide linkage in human factor XI, explaining why rabbit factor XI is a monomer in non-reducing SDS/PAGE. On size-exclusion chromatography, however, purified plasma rabbit factor XI, like the human protein and unlike prekallikrein, eluted as a dimer, demonstrating that rabbit factor XI circulates as a non-covalent dimer. In functional assays rabbit factor XI and human factor XI behaved similarly. Both monomeric and dimeric factor XI were detected in extracts of cells expressing rabbit factor XI. We conclude that the failure of rabbit factor XI to form a covalent homodimer due to the replacement of Cys-321 with His does not impair its functional activity because it exists in plasma as a non-covalent homodimer and homodimerization is an intracellular process.


Assuntos
Fator XI/química , Fator XI/genética , Sequência de Aminoácidos , Animais , Cromatografia , Clonagem Molecular , Cisteína/química , DNA Complementar/metabolismo , Dimerização , Eletroforese em Gel de Poliacrilamida , Humanos , Cinética , Dados de Sequência Molecular , Pré-Calicreína/química , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA