Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 991557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212372

RESUMO

Novel approaches to the characterization of medicinal plants as biofactories have lately increased in the field of biotechnology. In this work, a multifaceted approach based on plant tissue culture, metabolomics, and machine learning was applied to decipher and further characterize the biosynthesis of phenolic compounds by eliciting cell suspension cultures from medicinal plants belonging to the Bryophyllum subgenus. The application of untargeted metabolomics provided a total of 460 phenolic compounds. The biosynthesis of 164 of them was significantly modulated by elicitation. The application of neurofuzzy logic as a machine learning tool allowed for deciphering the critical factors involved in the response to elicitation, predicting their influence and interactions on plant cell growth and the biosynthesis of several polyphenols subfamilies. The results indicate that salicylic acid plays a definitive genotype-dependent role in the elicitation of Bryophyllum cell cultures, while methyl jasmonate was revealed as a secondary factor. The knowledge provided by this approach opens a wide perspective on the research of medicinal plants and facilitates their biotechnological exploitation as biofactories in the food, cosmetic and pharmaceutical fields.

2.
Plants (Basel) ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34834793

RESUMO

Phenolic compounds constitute an important family of natural bioactive compounds responsible for the medicinal properties attributed to Bryophyllum plants (genus Kalanchoe, Crassulaceae), but their production by these medicinal plants has not been characterized to date. In this work, a combinatorial approach including plant tissue culture, untargeted metabolomics, and machine learning is proposed to unravel the critical factors behind the biosynthesis of phenolic compounds in these species. The untargeted metabolomics revealed 485 annotated compounds that were produced by three Bryophyllum species cultured in vitro in a genotype and organ-dependent manner. Neurofuzzy logic (NFL) predictive models assessed the significant influence of genotypes and organs and identified the key nutrients from culture media formulations involved in phenolic compound biosynthesis. Sulfate played a critical role in tyrosol and lignan biosynthesis, copper in phenolic acid biosynthesis, calcium in stilbene biosynthesis, and magnesium in flavanol biosynthesis. Flavonol and anthocyanin biosynthesis was not significantly affected by mineral components. As a result, a predictive biosynthetic model for all the Bryophyllum genotypes was proposed. The combination of untargeted metabolomics with machine learning provided a robust approach to achieve the phytochemical characterization of the previously unexplored species belonging to the Bryophyllum subgenus, facilitating their biotechnological exploitation as a promising source of bioactive compounds.

3.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291844

RESUMO

The subgenus Bryophyllum includes about 25 plant species native to Madagascar, and is widely used in traditional medicine worldwide. Different formulations from Bryophyllum have been employed for the treatment of several ailments, including infections, gynecological disorders, and chronic diseases, such as diabetes, neurological and neoplastic diseases. Two major families of secondary metabolites have been reported as responsible for these bioactivities: phenolic compounds and bufadienolides. These compounds are found in limited amounts in plants because they are biosynthesized in response to different biotic and abiotic stresses. Therefore, novel approaches should be undertaken with the aim of achieving the phytochemical valorization of Bryophyllum sp., allowing a sustainable production that prevents from a massive exploitation of wild plant resources. This review focuses on the study of phytoconstituents reported on Bryophyllum sp.; the application of plant tissue culture methodology as a reliable tool for the valorization of bioactive compounds; and the application of machine learning technology to model and optimize the full phytochemical potential of Bryophyllum sp. As a result, Bryophyllum species can be considered as a promising source of plant bioactive compounds, with enormous antioxidant and anticancer potential, which could be used for their large-scale biotechnological exploitation in cosmetic, food, and pharmaceutical industries.

4.
Plants (Basel) ; 9(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796522

RESUMO

The current industrial requirements for food naturalness are forcing the development of new strategies to achieve the production of healthier foods by replacing the use of synthetic additives with bioactive compounds from natural sources. Here, we investigate the use of plant tissue culture as a biotechnological solution to produce plant-derived bioactive compounds with antioxidant activity and their application to protect fish oil-in-water emulsions against lipid peroxidation. The total phenolic content of Bryophyllum plant extracts ranges from 3.4 to 5.9 mM, expressed as gallic acid equivalents (GAE). The addition of Bryophyllum extracts to 4:6 fish oil-in-water emulsions results in a sharp (eight-fold) increase in the antioxidant efficiency due to the incorporation of polyphenols to the interfacial region. In the emulsions, the antioxidant efficiency of extracts increased linearly with concentration and levelled off at 500 µM GAE, reaching a plateau region. The antioxidant efficiency increases modestly (12%) upon increasing the pH from 3.0 to 5.0, while an increase in temperature from 10 to 30 °C causes a six-fold decrease in the antioxidant efficiency. Overall, results show that Bryophyllum plant-derived extracts are promising sources of bioactive compounds with antioxidant activity that can be eventually be used to control lipid oxidation in food emulsions containing (poly)unsaturated fatty acids.

5.
Sci Rep ; 9(1): 14830, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616022

RESUMO

The adsorption of gallic acid (GA) and propyl gallate (PG) on activated carbon (AC) was studied as a function of the AC mass and temperature. Clean first order behavior was obtained for at least three half-lives and the equilibrium was reached after ∼4 h contact time. An increase in the temperature (T = 20-40 °C) increases their adsorption rate constant values (k1) by 2.5 fold but has a negligible effect on the amount of antioxidant adsorbed per mass of AC at equilibrium. We also analyzed the adsorption process of polyphenols from Bryophyllum extracts and ca 100% of the total amount of the polyphenols in the extract were adsorbed when using 7 mg of AC. Results can be explained on the basis of the Freundlich isotherm but do not fit the Langmuir model. Results suggest that the combination of emerging in vitro plant culture technologies with adsorption on activated carbon can be successfully employed to remove important amounts of bioactive compounds from plant extracts by employing effective, sustainable and environmental friendly procedures.


Assuntos
Carvão Vegetal/química , Kalanchoe/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extração em Fase Sólida/métodos , Adsorção , Ácido Gálico/isolamento & purificação , Polifenóis/isolamento & purificação , Galato de Propila/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA