Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Evol Biol ; 33(4): 388-400, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32012387

RESUMO

Colour phenotypes are often involved in communication and are thus under selection by species interactions. However, selection may also act on colour through correlated traits or alternative functions of biochemical pigments. Such forms of selection are instrumental in maintaining petal colour diversity in plants. Pollen colour also varies markedly, but the maintenance of this variation is little understood. In Campanula americana, pollen ranges from white to dark purple, with darker morphs garnering more pollinator visits and exhibiting elevated pollen performance under heat stress. Here, we generate an F2 population segregating for pollen colour and measure correlations with floral traits, pollen attributes and plant-level traits related to fitness. We determine the pigment biochemistry of colour variants and evaluate maternal and paternal fitness of light and dark morphs by crossing within and between morphs. Pollen colour was largely uncorrelated with floral traits (petal colour, size, nectar traits) suggesting it can evolve independently. Darker pollen grains were larger and had higher anthocyanin content (cyanidin and peonidin) which may explain why they outperform light pollen under heat stress. Overall, pollen-related fitness metrics were greater for dark pollen, and dark pollen sires generated seeds with higher germination potential. Conversely, light pollen plants produce 61% more flowers than dark, and 18% more seeds per fruit, suggesting a seed production advantage. Results indicate that light and dark morphs may achieve fitness through different means-dark morphs appear to have a pollen advantage whereas light morphs have an ovule advantage-helping to explain the maintenance of pollen colour variation.


Assuntos
Campanulaceae/genética , Aptidão Genética , Pigmentação , Pólen , Campanulaceae/metabolismo , Cor , Flavonoides/metabolismo , Fenótipo , Reprodução
2.
Am J Bot ; 106(9): 1240-1247, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31415107

RESUMO

PREMISE: Hermaphroditic plants commonly reproduce through a mixture of selfing and outcrossing. The degree to which outcrossing rates reflect the availability of outcross pollen, genetic differentiation in the ability to autonomously self-fertilize, or both is often unclear. Despite the potential for autonomy and the pollination environment to jointly influence outcrossing, this interaction is rarely studied. METHODS: We reviewed studies from the literature that tested whether the pollination environment or floral traits that cause autonomous selfing predict variation in outcrossing rate among populations. We also measured outcrossing rates in 23 populations of Campanula americana and examined associations with the pollination environment, autonomy, and their interaction. RESULTS: Our review revealed that traits that facilitate selfing were often negatively associated with outcrossing rates whereas most aspects of the pollination environment poorly predicted outcrossing. Populations of C. americana varied from mixed mating to highly outcrossing, but variation was unrelated to population size, density, pollen limitation, or autonomous selfing ability. Outcrossing rate was significantly influenced by an interaction between autonomous selfing ability and pollen limitation. Across highly autonomous populations, elevated pollen limitation was associated with reduced outcrossing, while there was no relationship for less autonomous populations. CONCLUSIONS: Both the ability to self autonomously and pollen limitation interact to shape outcrossing rates in C. americana. This work suggests that autonomy affords mating-system flexibility, though it is not ubiquitous in all populations across the species range. Interactions between traits influencing autonomy and pollen limitation are likely to explain variation in outcrossing rates among populations of flowering plants.


Assuntos
Campanulaceae , Flores , Pólen , Polinização , Reprodução
3.
Ann Bot ; 123(6): 951-960, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-30566588

RESUMO

BACKGROUND AND AIMS: Pollinators often drive the evolution of floral traits, but their capacity to influence the evolution of pollen colour remains unclear. Pollen colour in Campanula americana is variable and displays a longitudinal cline from prevalence of deep purple in western populations to white and light-purple pollen in eastern populations. While selection for thermal tolerance probably underlies darker pollen in the west, factors contributing to the predominance of light pollen in eastern populations and the maintenance of colour variation within populations throughout the range are unknown. Here we examine whether pollinators contribute to the maintenance of pollen colour variation in C. americana. METHODS: In a flight cage experiment, we assessed whether Bombus impatiens foragers can use pollen colour as a reward cue. We then established floral arrays that varied in the frequency of white- and purple-pollen plants in two naturally occurring eastern populations. We observed foraging patterns of wild bees, totalling >1100 individual visits. KEY RESULTS: We successfully trained B. impatiens to prefer one pollen colour morph. In natural populations, the specialist pollinator, Megachile campanulae, displayed a strong and consistent preference for purple-pollen plants regardless of morph frequency. Megachile also exhibited a bias toward pollen-bearing male-phase flowers, and this bias was more pronounced for purple pollen. The other main pollinators, Bombus spp. and small bees, did not display pollen colour preference. CONCLUSIONS: Previous research found that Megachile removes twice as much pollen per visit as other bees and can deplete pollen from natural populations. Taken together, these results suggest that Megachile could reduce the reproductive success of plants with purple pollen, resulting in the prevalence of light-coloured pollen in eastern populations of C. americana. Our research demonstrates that pollinator preferences may play a role in the maintenance of pollen colour variation in natural populations.


Assuntos
Campanulaceae , Polinização , Animais , Abelhas , Cor , Flores , Pólen
4.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875304

RESUMO

Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana, visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant-pollinator mutualism, acting as functional parasites to C. americana It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce.


Assuntos
Abelhas/fisiologia , Campanulaceae/fisiologia , Pólen , Polinização , Simbiose , Animais , Tamanho Corporal , Flores/fisiologia , Especificidade da Espécie
5.
Am J Bot ; 105(2): 241-248, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29578289

RESUMO

PREMISE OF THE STUDY: The evolution of multiple floral traits often underlies the transition from outcrossing to selfing. Such traits can influence the ability to self, and the timing at which selfing occurs, which in turn affects the costs of selfing. Species that display variation in autonomous selfing provide an opportunity to dissect the phenotypic changes that contribute to variability in the mating system. METHODS: In a common garden, we measured dichogamy and herkogamy in 24 populations of the protandrous mixed-mating herb Campanula americana, and related these to autonomous fruit set (autonomy). We then measured the timing of self-pollen deposition and fruit production in populations with high and low autonomy, and determined whether pollen germinability across floral development contributes to variation in autonomy. KEY RESULTS: Populations that transitioned more rapidly to female phase displayed elevated autonomous selfing, but herkogamy was unassociated with autonomous selfing. Selfing occurred more rapidly in highly autonomous populations because of greater self-pollen deposition early in female phase. Pollen germinability in low-autonomy populations remained constant across floral development, but in high-autonomy populations it increased after floral anthesis and was highest near the onset of female phase. CONCLUSIONS: Reduced dichogamy, elevated self-pollen deposition, and higher pollen germination late in male phase contribute to both earlier selfing and greater selfing. These traits vary among populations, likely reflecting past selection on the mating system. While delayed selfing bears fewer fitness costs, the evolution of earlier selfing may be favored if self-pollen availability decreases over floral development.


Assuntos
Campanulaceae/fisiologia , Organismos Hermafroditas/fisiologia , Pólen/genética , Autofertilização , Campanulaceae/anatomia & histologia , Flores/anatomia & histologia , Flores/fisiologia , Polinização , Fatores de Tempo
6.
New Phytol ; 218(1): 370-379, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29297201

RESUMO

The evolution of flower color, especially petal pigmentation, has received substantial attention. Less understood is the evolutionary ecology of pollen pigmentation, though it varies among and within species and its biochemical properties affect pollen viability. We characterize the distribution of pollen color across 24 populations of the North American herb Campanula americana, and assess the degree to which this variation is genetically based. We identify abiotic factors that covary with pollen color and test whether germination of light and dark pollen is differentially affected by variable temperature and UV. Pollen color varies from white to deep purple in C. americana and is genetically determined. There was a longitudinal cline whereby pollen was darkest in western populations. Accounting for latitudinal variation, western populations experience elevated temperature and UV irradiance. Germination of light-colored pollen was reduced by 60% under high temperature, but dark pollen was unaffected. Exposure to UV reduced germination of light and dark pollen similarly. The cline in pollen color across the range may reflect adaptation to heat stress. This study supports thermal tolerance as a novel function of pollen pigmentation and contributes to growing evidence that abiotic factors can drive floral diversity.


Assuntos
Campanulaceae/fisiologia , Geografia , Pigmentação/fisiologia , Pólen/fisiologia , Estresse Fisiológico , Temperatura , Campanulaceae/efeitos da radiação , Germinação/efeitos da radiação , Pigmentação/efeitos da radiação , Pólen/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Raios Ultravioleta
7.
Ecology ; 98(11): 2930-2939, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869778

RESUMO

The reproductive assurance (RA) hypothesis predicts that the ability to autonomously self-fertilize should be favored in environments where a lack of mates or pollinators limits outcross reproduction. Because such limits to outcrossing are predicted to be most severe at range edges, elevated autonomy in peripheral populations is often attributed to RA. We test this hypothesis in 24 populations spanning the range of Campanula americana, including sampling at the range interior and three geographic range edges. We scored autonomous fruit set in a pollinator-free environment and detected clinal variation-autonomy increased linearly from the southern to the northern edge, and from the eastern to the western edge. We then address whether the cline reflects the contemporary pollination environment. We measured population size, plant density, pollinator visitation, outcross pollen limitation and RA in natural populations over two years. Most populations were pollen limited, and those that experienced higher visitation rates by bumblebees had reduced pollen limitation. Reproductive assurance, however, was generally low across populations and was unrelated to pollen limitation or autonomy. Neither pollen limitation nor RA displayed geographic clines. Finally, autonomy was not associated with pollinator visitation rates or mate availability. Thus, the data do not support the RA hypothesis; clinal variation in autonomy is unrelated to the current pollination environment. Therefore, geographic patterns of autonomy are likely the result of historical processes rather than contemporary natural selection for RA.


Assuntos
Ecossistema , Polinização , Meio Ambiente , Flores , Pólen , Densidade Demográfica , Reprodução , Seleção Genética
8.
New Phytol ; 213(1): 404-412, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27533526

RESUMO

Whole genome duplication is considered to be a significant contributor to angiosperm speciation due to accumulation of rapid, strong interploid reproductive isolation. However, recent work suggests that interploid reproductive isolation may not be complete, especially among higher order cytotypes. This study evaluates postzygotic reproductive isolation among three cytotypes within a polyploid complex. We conducted reciprocal crosses using two diploid and two hexaploid populations each crossed to tetraploid populations spanning the geographic and phylogenetic range of the Campanula rotundifolia polyploid complex. Interploid and intrapopulation crosses were scored for fruit set, seed number, germination proportion and pollen viability. Postzygotic isolation was calculated for each cross as the product of these fitness components. A subset of offspring was cytotyped via flow cytometry. Postzygotic isolation was significantly lower in tetraploid-hexaploid crosses than diploid-tetraploid crosses, mostly due to substantially higher germination among tetraploid-hexaploid crosses. Tetraploid-hexaploid crosses produced pentaploids exclusively, whereas diploid-tetraploid crosses produced both triploids and tetraploids in high frequencies. Postzygotic isolation was weaker among higher order polyploids than between diploids and tetraploids, and unreduced gametes may facilitate diploid-tetraploid reproduction. This incomplete postzygotic isolation could allow ongoing interploid gene flow, especially among higher order polyploids, which may slow divergence and speciation in polyploid complexes.


Assuntos
Magnoliopsida/genética , Magnoliopsida/fisiologia , Poliploidia , Isolamento Reprodutivo , Zigoto/fisiologia , Análise de Variância , Cruzamentos Genéticos , Aptidão Genética , Pólen/fisiologia
9.
Ann Bot ; 117(3): 421-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26749589

RESUMO

BACKGROUND AND AIMS: Floral traits are essential for ensuring successful pollination and reproduction in flowering plants. In particular, style and anther positions are key for pollination accuracy and efficiency. Variation in these traits among individuals has been well studied, but less is known about variation within flowers and plants and its effect on pollination and reproductive success. METHODS: Style deflexion is responsible for herkogamy and important for pollen deposition in Passiflora incarnata. The degree of deflexion may vary among stigmas within flowers as well as among flowers. We measured the variability of style deflexion at both the flower and the plant level. The fitness consequences of the mean and variation of style deflexion were then evaluated under natural pollination by determining their relationship to pollen deposition, seed production and average seed weight using structural equation modelling. In addition, the relationship between style deflexion and self-pollen deposition was estimated in a greenhouse experiment. KEY RESULTS: We found greater variation in style deflexion within flowers and plants than among plants. Variation of style deflexion at the flower and plant level was positively correlated, suggesting that variability in style deflexion may be a distinct trait in P. incarnata. Lower deflexion and reduced variation in that deflexion increased pollen deposition, which in turn increased seed number. However, lower styles also increased self-pollen deposition. In contrast, higher deflexion and greater variability of that deflexion increased variation in pollen deposition, which resulted in heavier seeds. CONCLUSIONS: Variability of style deflexion and therefore stigma placement, independent from the mean, appears to be a property of individual P. incarnata plants. The mean and variability of style deflexion in P. incarnata affected seed number and seed weight in contrasting ways, through the quantity and potentially quality of pollen deposition. This antagonistic selection via different fitness components may maintain diverse style phenotypes.


Assuntos
Flores/fisiologia , Aptidão Genética , Passiflora/fisiologia , Característica Quantitativa Herdável , Modelos Biológicos , Pólen/fisiologia , Polinização/fisiologia , Reprodução
10.
New Phytol ; 193(3): 787-796, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22122433

RESUMO

• The diversity of plant breeding systems provides the opportunity to study a range of potential reproductive adaptations. Many mechanisms remain poorly understood, among them the evolution and maintenance of male flowers in andromonoecy. Here, we studied the role of morphologically male flowers ('male morph') in andromonoecious Passiflora incarnata. • We measured morphological differences between hermaphroditic and male morph flowers in P. incarnata and explored the fruiting and siring ability of both flower types. • Male morph flowers in P. incarnata were of similar size to hermaphroditic flowers, and there was little evidence of different resource allocation to the two flower types. Male morph flowers were less capable of producing fruit, even under ample pollen and resource conditions. By contrast, male morph flowers were more successful in siring seeds. On average, male morph flowers sired twice as many seeds as hermaphroditic flowers. This difference in male fitness was driven by higher pollen export from male morph flowers as a result of greater pollen production and less self-pollen deposition. • The production of male morph flowers in P. incarnata appears to be a flexible adaptive mechanism to enhance male fitness, which might be especially beneficial when plants face temporary resource shortages for nurturing additional fruits.


Assuntos
Flores/anatomia & histologia , Flores/fisiologia , Passiflora/anatomia & histologia , Passiflora/fisiologia , Análise de Variância , Frutas/crescimento & desenvolvimento , Aptidão Genética , Pólen/fisiologia , Polinização/fisiologia , Característica Quantitativa Herdável , Reprodução/fisiologia , Estações do Ano
11.
Oecologia ; 141(4): 577-83, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15549400

RESUMO

Floral visitors vary in their pollination efficiency and their preferences for floral traits. If low-efficiency pollinators decrease the amount of pollen available to higher efficiency visitors, then low-efficiency visitors may actually have negative fitness consequences for the plants that they visit. We used experimental arrays in two populations to determine the floral preferences and the fitness effects of low-efficiency (or "ugly") pollinators on Campanula americana. These ugly pollinators (halictid bees) preferentially visited flowers with pollen over flowers that had had their pollen removed. C. americana pollen color varies quantitatively from light tan to dark purple, and we found that natural variation in pollen color influenced the magnitude of halictid preferences for flowers with pollen. In general, preferences for flowers with pollen were stronger when the ugly pollinators foraged in arrays of flowers with tan-colored pollen than in arrays with purple-colored pollen. When plants received few visits by efficient Bombus pollinators, visits by ugly pollinators significantly decreased siring success relative to plants where visits by ugly pollinators were prevented. In contrast, ugly pollinators did not influence siring success when higher efficiency pollinators were more abundant. Thus, the relationship between low-efficiency pollinators and the plants that they visit varies from commensalistic to antagonistic depending on the presence of other pollinators in the community. Our findings suggest that the negative fitness effects and floral preferences of low-efficiency or "ugly" pollinators may contribute to the maintenance of a pollen color polymorphism in C. americana.


Assuntos
Evolução Biológica , Campanulaceae/fisiologia , Flores/anatomia & histologia , Pólen/fisiologia , Seleção Genética , Análise de Variância , Animais , Abelhas/fisiologia , Comportamento Animal/fisiologia , Campanulaceae/anatomia & histologia , Modelos Logísticos , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA