Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 87(9): 1050-1064, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180995

RESUMO

Chronic social stress caused by daily agonistic interactions in male mice leads to a mixed anxiety/depression-like disorder that is accompanied by the development of psychogenic immunodeficiency and stimulation of oncogenic processes concurrently with many neurotranscriptomic changes in brain regions. The aim of the study was to identify carcinogenesis- and apoptosis-associated differentially expressed genes (DEGs) in the hypothalamus of male mice with depression-like symptoms and, for comparison, in aggressive male mice with positive social experience. To obtain two groups of animals with the opposite 20-day social experiences, a model of chronic social conflict was used. Analysis of RNA-Seq data revealed similar expression changes for many DEGs between the aggressive and depressed animals in comparison with the control group; however, the number of DEGs was significantly lower in the aggressive than in the depressed mice. It is likely that the observed unidirectional changes in the expression of carcinogenesis- and apoptosis-associated genes in the two experimental groups may be a result of prolonged social stress (of different severity) caused by the agonistic interactions. In addition, 26 DEGs were found that did not change expression in the aggressive animals and could be considered genes promoting carcinogenesis or inhibiting apoptosis. Akt1, Bag6, Foxp4, Mapk3, Mapk8, Nol3, Pdcd10, and Xiap were identified as genes whose expression most strongly correlated with the expression of other DEGs, suggesting that their protein products play a role in coordination of the neurotranscriptomic changes in the hypothalamus. Further research into functions of these genes may be useful for the development of pharmacotherapies for psychosomatic pathologies.


Assuntos
Hipotálamo , Derrota Social , Animais , Apoptose , Carcinogênese/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Estresse Psicológico/metabolismo
2.
BMC Neurosci ; 21(1): 12, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216748

RESUMO

BACKGROUND: Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs. Shedding the light on the mechanics of the above-mentioned cascade is of primary importance for this research domain. RESULTS: A mouse model of chronic social conflicts in daily agonistic interactions was used to analyze dorsal striatum neurons genes implicated in cAMP-mediated phosphorylation activation pathways specific for MSNs. Based on expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 and D2, correspondingly) gene pathways. We also found that D1 neurons genes clustering are split into two oppositely correlated states, passive and active ones, the latter apparently corresponding to D1 firing stage upon protein kinase A (PKA) activation. We observed that under defeat stress in chronic social conflicts the loser mice manifest overall depression of dopamine-mediated MSNs activity resulting in previously reported reduced motor activity, while the aggressive mice with positive fighting experience (aggressive mice) feature an increase in both D1-active phase and D2 MSNs genes expression leading to hyperactive behavior pattern corresponded by us before. Based on the alternative transcript isoforms expression analysis, it was assumed that many genes (Drd1, Adora1, Pde10, Ppp1r1b, Gnal), specifically those in D1 neurons, apparently remain transcriptionally repressed via the reversible mechanism of promoter CpG island silencing, resulting in alternative promoter usage following profound reduction in their expression rate. CONCLUSION: Based on the animal stress model dorsal striatum pooled tissue RNA-Seq data restricted to cAMP related genes subset we elucidated MSNs steady states exhaustive projection for the first time. We correspond the existence of D1 active state not explicitly outlined before, and connected with dynamic dopamine neurotransmission cycles. Consequently, we were also able to indicate an oscillated postsynaptic dopamine vs glutamate action pattern in the course of the neurotransmission cycles.


Assuntos
Corpo Estriado/metabolismo , AMP Cíclico/genética , Dopamina/genética , Neurônios GABAérgicos/metabolismo , Expressão Gênica , Neurônios/metabolismo , Animais , AMP Cíclico/metabolismo , Dopamina/metabolismo , Redes Reguladoras de Genes , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Núcleos da Rafe/metabolismo , Transdução de Sinais/genética , Estresse Psicológico/genética , Área Tegmentar Ventral/metabolismo
3.
Neural Plast ; 2016: 3289187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839715

RESUMO

Chronic social defeat stress leads to the development of anxiety- and depression-like states in male mice and is accompanied by numerous molecular changes in brain. The influence of 21-day period of social stress on ribosomal gene expression in five brain regions was studied using the RNA-Seq database. Most Rps, Rpl, Mprs, and Mprl genes were upregulated in the hypothalamus and downregulated in the hippocampus, which may indicate ribosomal dysfunction following chronic social defeat stress. There were no differentially expressed ribosomal genes in the ventral tegmental area, midbrain raphe nuclei, or striatum. This approach may be used to identify a pharmacological treatment of ribosome biogenesis abnormalities in the brain of patients with "ribosomopathies."


Assuntos
Dominação-Subordinação , Expressão Gênica , Hipocampo/metabolismo , Hipotálamo/metabolismo , Ribossomos/genética , Estresse Psicológico/genética , Animais , Comportamento Animal/fisiologia , Hipotálamo/fisiopatologia , Masculino , Camundongos , Ribossomos/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA