Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 39(6): 1054-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21393461

RESUMO

A refined cytochrome P450 (P450) enzyme IC50 shift assay for more accurately screening CYP3A time-dependent inhibitors (TDIs) is presented. In contrast to the regular IC50 shift assay, in which only one pair of P450 inhibition curves is generated, this modified method generates two pairs of inhibition curves; one pair of curves is created from human liver microsomal incubations with the test article in the presence or absence of NADPH (curves 1 and 2) (same as the traditional assay), and the other pair is created from new microsomal incubations with extract (compound/metabolites) of previous incubations (curves 3 and 4). To assess the true CYP3A time-dependent inhibition, we propose a new parameter, the vertical IC50 curve shift (VICS), represented by vertical shift difference between the two sets of curves divided by inhibitor concentration at which maximal vertical shift of curves 1 and 2 is observed. A shift in the curves 1 and 2 could mean a time-dependent inhibition or formation of a more active inhibitory metabolite(s). The new method provides more reliable characterization of the shift as a result of a true TDI- or metabolite-mediated reversible inhibition. Nine known TDI drugs were evaluated using this refined shift assay. The derived VICS values correlated well with the reported k(inact)/K(I) values derived via the conventional dilution assay method. Thus, the refined assay can be used to identify a true TDI and quantitatively assess the inactivation potential of TDIs in a high-throughput fashion. This assay can be invaluable to screen for true P450 TDIs in the early drug discovery.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/efeitos adversos , Ensaios de Triagem em Larga Escala/métodos , Citocromo P-450 CYP3A , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Fatores de Tempo
2.
Drug Metab Dispos ; 39(4): 693-702, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21177487

RESUMO

Oxymetazoline (6-tert-butyl-3-(2-imidazolin-2-ylmethyl)-2,4-dimethylphenol) has been widely used as a nonprescription nasal vasoconstrictor for >40 years; however, its metabolic pathway has not been investigated. This study describes the in vitro metabolism of oxymetazoline in human, rat, and rabbit liver postmitochondrial supernatant fraction from homogenized tissue (S9) fractions and their microsomes supplemented with NADPH. The metabolites of oxymetazoline identified by liquid chromatography (LC)/UV/tandem mass spectrometry (MS/MS), included M1 (monohydroxylation of the t-butyl group), M2 (oxidative dehydrogenation of the imidazoline to an imidazole moiety), M3 (monohydroxylation of M2), M4 (dihydroxylation of oxymetazoline), and M5 (dihydroxylation of M2). Screening with nine human expressed cytochromes P450 (P450s) identified CYP2C19 as the single P450 isoform catalyzing the formation of M1, M2, and M3. Glutathione conjugates of oxymetazoline (M6) and M2 (M7) were identified in the liver S9 fractions, indicating the capability of oxymetazoline to undergo bioactivation to reactive intermediate species. M6 and M7 were not detected in those liver S9 incubations without NADPH. Cysteine conjugates (M8 and M9) derived from glutathione conjugates and hydroxylated glutathione conjugates (M10 and M11) were also identified. The reactive intermediate of oxymetazoline was trapped with glutathione and N-acetyl cysteine and identified by LC/MS/MS. M6 was isolated and identified by one-dimensional or two-dimensional NMR as the glutathione conjugate of a p-quinone methide. We have shown the tendency of oxymetazoline to form p-quinone methide species via a bioactivation mechanism involving a CYP2C19-catalyzed two-electron oxidation. Nevertheless, we conclude that the formation of this reactive species might not be a safety concern for oxymetazoline nasal products because of the typical low-dose and brief dosage regimen limited to nasal delivery.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Oximetazolina/metabolismo , Simpatomiméticos/metabolismo , Acetilcisteína/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2C19 , Humanos , Hidroxilação , Técnicas In Vitro , Indolquinonas/metabolismo , Fígado/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Oxirredução , Oximetazolina/química , Coelhos , Ratos , Simpatomiméticos/química
3.
Curr Drug Metab ; 8(4): 341-63, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17504223

RESUMO

Drug transporters, including efflux transporters (the ATP binding cassette (ABC) proteins) and uptake transporters (the solute carrier proteins (SLC)), have an important impact on drug disposition, efficacy, drug-drug interactions and toxicity. Identification of the interactions of chemical scaffolds with transporters at the early stages of drug development can assist in the optimization and selection of new drug candidates. In this review, we discuss current in vitro and in vivo models used to investigate the interactions between drugs and transporters such as P-gp, MRP, BCRP, BSEP, OAT, OATP, OCT, NTCP, PEPT1/2 and NT. In vitro models including cell-based, cell-free, and yeast systems as well as in vivo models such as genetic knockout, gene deficient and chemical knockout animals are discussed and compared. The applications, throughput, advantages and limitations of each model are also addressed in this review.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Autorradiografia , Ligação Competitiva , Bioensaio , Transporte Biológico , Células Cultivadas , Corantes Fluorescentes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Microscopia Confocal , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons , Frações Subcelulares , Simportadores/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Transfecção
4.
Drug Metab Dispos ; 34(9): 1600-5, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16790553

RESUMO

Apparent intrinsic clearance (CL(int,app)) of 7-ethoxycoumarin, phenacetin, propranolol, and midazolam was measured using rat and human liver microsomes and freshly isolated and cryopreserved hepatocytes to determine factors responsible for differences in rates of metabolism in these systems. The cryopreserved and freshly isolated hepatocytes generally provided similar results, although there was greater variability using the latter system. The CL(int,app) values in hepatocytes are observed to be lower than that in microsomes, and this difference becomes greater for compounds with high CL(int,app). This could partly be attributed to the differences in the free fraction (fu). The fu in hepatocyte incubations (fu,hep-inc) was influenced not only by the free fraction of compounds in the incubation buffer (fu,buffer) but also by the rate constants of uptake (k(up)) and metabolism (k(met)). This report provides a new derivation for fu,hep-inc, which can be expressed as fu,hep-inc = [k(up)/(k(met) + k(up))]/[1 + (C(hep)/C(buffer)) x (V(hep)/V(buffer))], where the C(hep), C(buffer), V(hep), and V(buffer) represent the concentrations of a compound in hepatocytes and buffer and volumes of hepatocytes and buffer, respectively. For midazolam, the fu,hep-inc was calculated, and the maximum metabolism rate in hepatocytes was shown to be limited by the uptake rate.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Animais , Transporte Biológico , Cumarínicos/metabolismo , Criopreservação , Difusão , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Técnicas In Vitro , Cinética , Taxa de Depuração Metabólica , Midazolam/metabolismo , Fenacetina/metabolismo , Propranolol/metabolismo , Ratos , Reprodutibilidade dos Testes
5.
Drug Metab Dispos ; 34(3): 384-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16326814

RESUMO

The microdosing strategy allows for early assessment of human pharmacokinetics of new chemical entities using more limited safety assessment requirements than those requisite for a conventional phase I program. The current choice for evaluating microdosing is accelerator mass spectrometry (AMS) due to its ultrasensitivity for detecting radiotracers. However, the AMS technique is still expensive to be used routinely and requires the preparation of radiolabeled compounds. This report describes a feasibility study with conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology for oral microdosing assessment in rats, a commonly used preclinical species. The nonlabeled drugs fluconazole and tolbutamide were studied because of their similar pharmacokinetics characteristics in rats and humans. We demonstrate that pharmacokinetics can be readily characterized by LC-MS/MS at a microdose of 1 microg/kg for these molecules in rats, and, hence, LC-MS/MS should be adequate in human microdosing studies. The studies also exhibit linearity in exposure between the microdose and >or=1000-fold higher doses in rats for these drugs, which are known to show a linear dose-exposure relationship in the clinic, further substantiating the potential utility of LC-MS/MS in defining pharmacokinetics from the microdose of drugs. These data should increase confidence in the use of LC-MS/MS in microdose pharmacokinetics studies of new chemical entities in humans. Application of this approach is also described for an investigational compound, MLNX, in which the pharmacokinetics in rats were determined to be nonlinear, suggesting that MLNX pharmacokinetics at microdoses in humans also might not reflect those at the therapeutic doses. These preclinical studies demonstrate the potential applicability of using traditional LC-MS/MS for microdose pharmacokinetic assessment in humans.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Preparações Farmacêuticas/sangue , Animais , Cromatografia Líquida , Relação Dose-Resposta a Droga , Modelos Lineares , Masculino , Espectrometria de Massas , Preparações Farmacêuticas/administração & dosagem , Farmacocinética , Ratos , Ratos Sprague-Dawley
6.
Curr Top Med Chem ; 5(11): 1033-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16181128

RESUMO

The high-throughput screening in drug discovery for absorption, distribution, metabolism and excretion (ADME) properties has become the norm in the industry. Only a few years ago it was ADME properties that were attributed to more failure of drugs than efficacy or safety in the clinic trials. With the realization of new techniques and refinement of existing techniques better projections for the pharmacokinetic properties of compounds in humans are being made, shifting the drug failure attributes more to the safety and efficacy properties of drug candidates. There are a tremendous number of tools available to discovery scientists to screen compounds for optimization of ADME properties and selection of better candidates. However, the use of these tools has generally been to characterize these compounds rather than to select among them. This report discusses applications of the available ADME tools to better understand the clinical implication of these properties, and to optimize these properties. It also provides tracts for timing of studies with respect to the stage of the compound during discovery, by means of a discovery assay by stage (DABS) paradigm. The DABS provide the team with a rationale for the types of studies to be done during hit-to-lead, early and late lead optimization stages of discovery, as well as outlining the deliverables (objectives) at those stages. DABS has proven to be optimal for efficient utilization of resources and helped the discovery team to track the progress of compounds and projects.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/métodos , Métodos , Preparações Farmacêuticas/metabolismo , Farmacocinética
7.
Drug Metab Dispos ; 30(7): 795-804, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12065438

RESUMO

Induction of cytochrome P450 3A4 (CYP3A4) is determined typically by employing primary culture of human hepatocytes and measuring CYP3A4 mRNA, protein and microsomal activity. Recently a pregnane X receptor (PXR) reporter gene assay was established to screen CYP3A4 inducers. To evaluate results from the PXR reporter gene assay with those from the aforementioned conventional assays, 14 drugs were evaluated for their ability to induce CYP3A4 and activate PXR. Sandwiched primary cultures of human hepatocytes from six donors were used and CYP3A4 activity was assessed by measuring microsomal testosterone 6beta-hydroxylase activity. Hepatic CYP3A4 mRNA and protein levels were also analyzed using branched DNA technology/Northern blotting and Western blotting, respectively. In general, PXR activation correlated with the induction potential observed in human hepatocyte cultures. Clotrimazole, phenobarbital, rifampin, and sulfinpyrazone highly activated PXR and increased CYP3A4 activity; carbamazepine, dexamethasone, dexamethasone-t-butylacetate, phenytoin, sulfadimidine, and taxol weakly activated PXR and induced CYP3A4 activity, and methotrexate and probenecid showed no marked activation in either system. Ritonavir and troleandomycin showed marked PXR activation but no increase (in the case of troleandomycin) or a significant decrease (in the case of ritonavir) in microsomal CYP3A4 activity. It is concluded that the PXR reporter gene assay is a reliable and complementary method to assess the CYP3A4 induction potential of drugs and other xenobiotics.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Genes Reporter/fisiologia , Hepatócitos/enzimologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Adulto , Idoso , Células Cultivadas , Criança , Citocromo P-450 CYP3A , Avaliação Pré-Clínica de Medicamentos/métodos , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Feminino , Genes Reporter/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Preparações Farmacêuticas/metabolismo , Receptor de Pregnano X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA