Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(23): e202302525, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36930411

RESUMO

Carbon monoxide (CO) is an endogenous signaling molecule with broad therapeutic effects. Here, a multifunctional X-ray-triggered carbon monoxide (CO) and manganese dioxide (MnO2 ) generation nanoplatform based on metal carbonyl and scintillating nanoparticles (SCNPs) is reported. Attributed to the radioluminescent characteristic of SCNPs, UV-responsive Mn2 (CO)10 is not only indirectly activated to release CO by X-ray but can also be degraded into MnO2 . A high dose of CO can be used as a glycolytic inhibitor for tumor suppression; it will also sensitize tumor cells to radiotherapy. Meanwhile MnO2 , as the photolytic byproduct of Mn2 (CO)10 , has both glutathione (GSH) depletion and Fenton-like Mn2+ delivery properties to produce highly toxic hydroxyl radical (⋅OH) in tumors. Thus, this strategy can realize X-ray-activated CO release, GSH depletion, and ⋅OH generation for cascade cancer radiosensitization. Furthermore, X-ray-activated Mn2+ in vivo demonstrates an MRI contrast effect, making it a potential theranostic nanoplatform.


Assuntos
Nanopartículas , Neoplasias , Humanos , Compostos de Manganês/farmacologia , Compostos de Manganês/uso terapêutico , Óxidos/farmacologia , Monóxido de Carbono/farmacologia , Monóxido de Carbono/uso terapêutico , Raios X , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Glutationa/metabolismo , Peróxido de Hidrogênio/uso terapêutico
2.
Small ; 17(18): e2007734, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33738929

RESUMO

The production of oxygen by photosynthetic microorganisms (PSMs) has recently attracted interest concerning the in vivo treatment of multiple diseases for their photosynthetic oxygen production in vivo, since PSMs have good biological safety. Here, the first evidence that PSMs can be used as a photothermal source to perform biophotothermal therapy (bio-PTT) is provided. In vitro and in vivo experiments proved that PSMs can generate heat for the direct elimination of tumors and release a series of pathogen-associated molecular patterns and adjuvants for immune stimulation under light irradiation. Bio-PTT enabled a local tumor inhibition rate exceeding 90% and an abscopal tumor inhibition rate exceeding 75%. This strategy also produced a stronger antitumor immune memory effect to prevent tumor recurrence. The bio-PTT strategy provides a novel direction for photothermal therapy as it simultaneously produces local and abscopal antitumor effects.


Assuntos
Hipertermia Induzida , Neoplasias , Linhagem Celular Tumoral , Humanos , Imunidade , Imunoterapia , Neoplasias/terapia , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA