Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630301

RESUMO

Celery seeds have been used as an effective dietary supplement to manage hyperuricemia and diminish gout recurrence. Xanthine oxidase (XOD), the critical enzyme responsible for uric acid production, represents the most promising target for anti-hyperuricemia in clinical practice. In this study, we aimed to establish a method based on affinity ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) to directly and rapidly identify the bioactive compounds contributing to the XOD-inhibitory effects of celery seed crude extracts. Chemical profiling of celery seed extracts was performed using UPLC-TOF/MS. The structure was elucidated by matching the multistage fragment ion data to the database and publications of high-resolution natural product mass spectrometry. Thirty-two compounds, including fourteen flavonoids and six phenylpeptides, were identified from celery seed extracts. UF-LC-MS showed that luteolin-7-O-apinosyl glucoside, luteolin-7-O-glucoside, luteolin-7-O-malonyl apinoside, luteolin-7-O-6'-malonyl glucoside, luteolin, apigenin, and chrysoeriol were potential binding compounds of XOD. A further enzyme activity assay demonstrated that celery seed extract (IC50 = 1.98 mg/mL), luteolin-7-O-apinosyl glucoside (IC50 = 3140.51 µmol/L), luteolin-7-O-glucoside (IC50 = 975.83 µmol/L), luteolin-7-O-6'-malonyl glucoside (IC50 = 2018.37 µmol/L), luteolin (IC50 = 69.23 µmol/L), apigenin (IC50 = 92.56 µmol/L), and chrysoeriol (IC50 = 40.52 µmol/L) could dose-dependently inhibit XOD activities. This study highlighted UF-LC-MS as a useful platform for screening novel XOD inhibitors and revealed the chemical basis of celery seed as an anti-gout dietary supplement.


Assuntos
Apium , Cromatografia Líquida de Alta Pressão , Apium/química , Sementes/química , Xantina Oxidase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Modelos Moleculares , Estrutura Terciária de Proteína
2.
Front Nutr ; 9: 914380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757268

RESUMO

Dendrobium officinale Kimura et Migo has been used as a traditional Chinese medicine (TCM) and a functional food for thousands of years. Carbohydrate is one of the most important effective substances and indicative components in D. officinale. However, since the qualitative and quantitative analysis of polysaccharides in D. officinale remains a challenge and limitation, herein, an oligosaccharide-quality marker approach was newly developed for quality assessment of D. officinale by spectrum-effect relationships between high performance liquid chromatographic (HPLC) fingerprints and anti-inflammatory effects. The HPLC fingerprints of 48 batches of oligosaccharides from D. officinale (DOOS) were developed and analyzed with similarity analysis (SA) and hierarchical cluster analysis (HCA), and eight common peaks were identified. In vitro screening experiment indicated that DOOS potentially inhibited nitric oxide (NO) production and effectively reduced the release of inflammatory cytokines, such as TNF-α, IL-6, and IL-1ß in RAW 264.7 cells, thereby reducing the inflammatory response of cells. Finally, the HPLC fingerprint of different batches of DOOS was combined with in vitro anti-inflammatory activity to assess the spectrum-effect relationships of DOOS by gray correlation analysis (GCA), in addition, the purified oligosaccharide components were identified and validated for NO inhibitory activity. Our results showed four DOOS (maltotetraose, maltopentaose, maltohexaose, and mannohexaose) were relevant to anti-inflammatory effects and could be as quality markers for the quality control of D. officinale. It suggests that the "oligosaccharide-spectrum-effect" relationships approach is a simple and reliable method for the quality control of herb medicines or nutritious foods.

3.
Int J Genomics ; 2020: 9054192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351982

RESUMO

Herbal pairs are used as a bridge between single herb and polyherbal formulas in Traditional Chinese Medicine (TCM) to provide rationale for complicated TCM formulas. The effectiveness and rationality of TCM herbal pairs have been widely applied as a strategy for dietary supplements. However, due to the complexity of the phytochemistry of individual and combinations of herbal materials, it is difficult to reveal their effective and synergistic mechanisms from a molecular or systematic point of view. In order to address this question, UPLC-Q-TOF/MS analysis and System Pharmacology tools were applied to explore the mechanism of action, using a White Peony (Paeoniae Radix Alba) and Licorice (Glycyrrhizae Radix et Rhizoma)-based dietary supplement. A total of sixteen chemical constituents of White Peony and Licorice were isolated and identified, which interact with 73 liver protection-related targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed along with network analysis. Results showed that the synergistic mechanism of the White Peony and Licorice herbal pair was associated with their coregulation of bile secretion and ABC transporter pathways. In addition, Licorice exhibits a specific response to drug and xenobiotic metabolism pathways, whereas White Peony responds to Toll-like receptor signaling, C-type lectin receptor signaling, IL-17 signaling, and TNF signaling pathways, resulting in the prevention of hepatocyte apoptosis and the reduction of immune and inflammation-mediated liver damage. These findings suggest that a White Peony and Licorice herbal pair supplement would have a liver-protecting benefit through complimentary and synergistic mechanisms. This approach provides a new path to explore herbal compatibility in dietary supplements derived from TCM theory.

4.
Zhongguo Zhong Yao Za Zhi ; 38(23): 4113-8, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24791500

RESUMO

To establish the local quality standard for Dendrobii devoniani caulis from Longling, Yunnan, the pharmacognostic characteristics microscopic characteristics and TLC identification were developed. Sulfuric acid-phenol method was used to determine the content of polysaccharide. An HPLC method was adopted to determine the content of mannose, and extractives were determined according to the procedures recorded in the Appendix of Chinese Pharmacopoeia(2010). The results showed a strong characteristics microscopic of Dendrobii devoniani caulis, and its TLC identification had a good resolution with clear spots; the content of polysaccharide is 35.7% -52.1% (average 42.7%), mannose 27.8%-46.1% (average 35.8%), and extract 4.5%-10.6% (average 7.38%). The method is simple, accurate and reliable, with good reproducibility. The established standard is acceptable for quality evaluation of Dendrobii devoniani caulis from Longling, Yunnan.


Assuntos
Dendrobium/química , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida de Alta Pressão , Polissacarídeos/análise , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA