Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(1): 12, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451071

RESUMO

Chronic lead poisoning has become a major factor in global public health. Chelation therapy is usually used to manage lead poisoning. Dimercaptosuccinic acid (DMSA) is a widely used heavy metal chelation agent. However, DMSA has the characteristics of poor water solubility, low oral bioavailability, and short half-life, which limit its clinical application. Herein, a long-cycle slow-release nanodrug delivery system was constructed. We successfully coated the red blood cell membrane (RBCM) onto the surface of dimercaptosuccinic acid polylactic acid glycolic acid copolymer (PLGA) nanoparticles (RBCM-DMSA-NPs), which have a long cycle and detoxification capabilities. The NPs were characterized and observed by particle size meters and transmission electron microscopy. The results showed that the particle size of RBCM-DMSA-NPs was approximately 146.66 ± 2.41 nm, and the zeta potential was - 15.34 ± 1.60 mV. The homogeneous spherical shape and clear core-shell structure of the bionic nanoparticles were observed by transmission electron microscopy. In the animal tests, the area under the administration time curve of RBCM-DMSA-NPs was 156.52 ± 2.63 (mg/L·h), which was 5.21-fold and 2.36-fold that of free DMSA and DMSA-NPs, respectively. Furthermore, the median survival of the RBCM-DMSA-NP treatment group (47 days) was 3.61-fold, 1.32-fold, and 1.16-fold for the lead poisoning group, free DMSA, and DMSA-NP groups, respectively. The RBCM-DMSA-NP treatment significantly extended the cycle time of the drug in the body and improved the survival rate of mice with chronic lead poisoning. Histological analyses showed that RBCM-DMSA-NPs did not cause significant systemic toxicity. These results indicated that RBCM-DMSA-NPs could be a potential candidate for long-term chronic lead exposure treatment.


Assuntos
Intoxicação por Chumbo , Nanopartículas , Animais , Camundongos , Antídotos , Biomimética , Intoxicação por Metais Pesados , Succímero/uso terapêutico , Intoxicação por Chumbo/tratamento farmacológico
2.
Genome Biol ; 23(1): 188, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071507

RESUMO

BACKGROUND: Garlic is an entirely sterile crop with important value as a vegetable, condiment, and medicine. However, the evolutionary history of garlic remains largely unknown. RESULTS: Here we report a comprehensive map of garlic genomic variation, consisting of amazingly 129.4 million variations. Evolutionary analysis indicates that the garlic population diverged at least 100,000 years ago, and the two groups cultivated in China were domesticated from two independent routes. Consequently, 15.0 and 17.5% of genes underwent an expression change in two cultivated groups, causing a reshaping of their transcriptomic architecture. Furthermore, we find independent domestication leads to few overlaps of deleterious substitutions in these two groups due to separate accumulation and selection-based removal. By analysis of selective sweeps, genome-wide trait associations and associated transcriptomic analysis, we uncover differential selections for the bulb traits in these two garlic groups during their domestication. CONCLUSIONS: This study provides valuable resources for garlic genomics-based breeding, and comprehensive insights into the evolutionary history of this clonal-propagated crop.


Assuntos
Alho , Alho/genética , Genoma de Planta , Genômica , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
3.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2457-2464, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35531693

RESUMO

In view of the longevity and innate immune escape of red blood cells, this study designed the red blood cell membrane-coated paclitaxel nanosuspension [RBC-(PTX)NS] and investigated its physicochemical properties and antitumor effect in vitro. Paclitaxel nanosuspension [(PTX)NS] was prepared by ultrasonic precipitation and then RBC-(PTX)NS by ultrasonic coating. The formulation of(PTX)NS was optimized with Box-Behnken method and indexes of particle diameter, zeta potential, and stability. The morphology, particle diameter, stability, in vitro dissolution, and antitumor effect of(PTX)NS and RBC-(PTX)NS were characterized. The results showed that the particle diameter and zeta potential were(129.38±0.92) nm and(-22.41±0.48) mV, respectively, for the optimized(PTX)NS, while(142.5±0.68) nm and(-29.85±0.53) mV, respectively, for RBC-(PTX)NS. Under the transmission electron microscope,(PTX)NS was spherical and RBC-(PTX)NS had obvious core-shell structure. RBC-(PTX)NS remained stable for 5 days at 4 ℃. The in vitro dissolution test demonstrated that the cumulative release rate of RBC-(PTX)NS reached 79% within 20 min, which was significantly higher than that(25%) of(PTX)NS(P<0.05). As evidenced by MTT assay, RBC-(PTX)NS highly inhibited the proliferation of HepG2 cells in a dose-dependent manner. The cell membrane-coated nano-preparation preparation method is simple and reproducible. It improves the solubility of PTX and endows RBC-(PTX)NS with higher stability and stronger cytotoxicity. Thus, it is a new method for the delivery of PTX via nanocrystallization.


Assuntos
Nanopartículas , Paclitaxel , Membrana Eritrocítica , Nanopartículas/química , Paclitaxel/farmacologia , Tamanho da Partícula , Suspensões
4.
Mol Ther Nucleic Acids ; 27: 349-362, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35024246

RESUMO

Despite the success of small interfering RNAs (siRNAs) in clinical settings, their fast clearance and poor delivery efficiency to target cells still hinder their therapeutic effect. Herein, a new treatment system was constructed by combining thermosensitive liposomes with the macrophage membrane, tumor-targeting cyclic Arg-Gly-Asp peptide, a cell-penetrating peptide, and thermotherapy. The constructed system was found to be thermosensitive and stable; the proteins were inherited from the macrophage membrane. This new system combined with thermotherapy displayed the least uptake by macrophages, the greatest uptake by HepG2 cells, the most obvious HepG2 cell apoptosis, and the strongest inhibition of Bcl-2 mRNA and Bcl-2 protein in HepG2 cells. Moreover, 24 h after system administration in tumor-bearing mice, the most prominent distribution of siRNA was observed in tumors, while almost no siRNA was found in other organs. The strongest inhibition of Bcl-2 mRNA, Bcl-2 protein, and tumors was found in mice that had received the proposed system. In summary, when using the constructed system both in vitro and in mice, less uptake by the reticuloendothelial system, greater accumulation in tumor cells, and improved therapeutic efficacy were observed. Therefore, this new system can deliver siRNA selectively and efficiently, and it is a promising therapeutic candidate for precise tumor-targeted therapy.

5.
Mol Plant ; 13(9): 1328-1339, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730994

RESUMO

Garlic, an economically important vegetable, spice, and medicinal crop, produces highly enlarged bulbs and unique organosulfur compounds. Here, we report a chromosome-level genome assembly for garlic, with a total size of approximately 16.24 Gb, as well as the annotation of 57 561 predicted protein-coding genes, making garlic the first Allium species with a sequenced genome. Analysis of this garlic genome assembly reveals a recent burst of transposable elements, explaining the substantial expansion of the garlic genome. We examined the evolution of certain genes associated with the biosynthesis of allicin and inulin neoseries-type fructans, and provided new insights into the biosynthesis of these two compounds. Furthermore, a large-scale transcriptome was produced to characterize the expression patterns of garlic genes in different tissues and at various growth stages of enlarged bulbs. The reference genome and large-scale transcriptome data generated in this study provide valuable new resources for research on garlic biology and breeding.


Assuntos
Dissulfetos/metabolismo , Alho/genética , Genoma de Planta/genética , Ácidos Sulfínicos/metabolismo , Elementos de DNA Transponíveis/genética , Alho/metabolismo , Transcriptoma/genética
6.
Int J Nanomedicine ; 14: 689-705, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774330

RESUMO

BACKGROUND: Intratumoral injection is a palliative treatment that aims at further improvement in the survival and quality of life of patients with advanced or recurrent carcinomas, or cancer patients with severe comorbidities or those with a poor performance status. METHODS: In this study, a solvent-injection method was used to prepare paclitaxel-cholesterol complex-loaded lecithin-chitosan nanoparticles (PTX-CH-loaded LCS_NPs) for intratumoral injection therapy, and the physicochemical properties of NPs were well characterized. RESULTS: The particle size and zeta potential of PTX-CH-loaded LCS_NPs were 142.83±0.25 nm and 13.50±0.20 mV, respectively. Release behavior of PTX from PTX-CH-loaded LCS_NPs showed a pH-sensitive pattern. The result of cell uptake assay showed that PTX-CH-loaded LCS_NPs could effectively enter cells via the energy-dependent caveolae-mediated endocytosis and macropinocytosis in company with the Golgi apparatus. Meanwhile, PTX-CH-loaded LCS_NPs had a better ability to induce cell apoptosis than PTX solution. The in vivo antitumor results suggested that PTX-CH-loaded LCS_NPs effectively inhibited mouse mammary cancer growth and metastasis to distant organs and significantly improved the survival rate of tumor-bearing mice by intratumoral administration. CONCLUSION: In general, our study demonstrated that PTX-CH-loaded LCS_NPs used for palliative treatment by intratumoral injection showed improved safety and antitumor efficacy, which provided an alternative approach in the field of palliative chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Quitosana/química , Colesterol/química , Injeções Intralesionais , Lecitinas/química , Nanopartículas/química , Paclitaxel/uso terapêutico , Cuidados Paliativos , Animais , Apoptose/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Fígado/patologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia , Paclitaxel/química , Paclitaxel/farmacologia , Tamanho da Partícula , Polissorbatos/química , Análise de Sobrevida , Resultado do Tratamento
7.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487433

RESUMO

Dimercaptosuccinic acid (DMSA) is an oral heavy metal chelator. Although DMSA is the most acceptable chelator in the urinary excretion of toxic elements from children and adults, its defects in plasma binding and the membrane permeability limit its interaction with intracellular elements and affect its efficacy in chelation therapy. Herein, a novel nanocomposite composed of mesoporous silica nanoparticles (MSNs), disulfide bond, and DMSA was synthesized and characterized with a scanning/transmission electron microscope, IR and Raman spectra, and TGA analysis. The in vitro interactions with glutathione (GSH) and cellular uptake assays showed that it was able to be stable in extracellular environments such as in blood, be internalized by cells, and release DMSA inside via GSH-triggered disulfide cleavage reaction. The in vitro adsorption assays showed that MSNs-SH as its intracellular metabolite had strong adsorbability for models of Hg2+ or Pb2+. The hemolysis and cell viability assays showed that it was compatible with blood and cells even at a concentration of 1000 µg·mL-1. All above could not only enable it to be a GSH-responsive drug delivery system (DDS) for DMSA delivery but also to be a solution for its defects and efficacy. Thus, introduction of intelligent DDS might open a new avenue for DMSA-based chelation therapy.


Assuntos
Glutationa/química , Nanocompostos/química , Dióxido de Silício/química , Succímero/química , Linhagem Celular , Sobrevivência Celular/fisiologia , Quelantes/química , Humanos , Microscopia Eletroquímica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA