Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2400846, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659315

RESUMO

J-aggregate is a promising strategy to enhance second near-infrared window (NIR-II) emission, while the controlled synthesis of J-aggregated NIR-II dyes is a huge challenge because of the lack of molecular design principle. Herein, bulk spiro[fluorene-9,9'-xanthene] functionalized benzobisthiadiazole-based NIR-II dyes (named BSFX-BBT and OSFX-BBT) are synthesized with different alkyl chains. The weak repulsion interaction between the donor and acceptor units and the S…N secondary interactions make the dyes to adopt a co-planar molecular conformation and display a peak absorption >880 nm in solution. Importantly, BSFX-BBT can form a desiring J-aggregate in the condensed state, and femtosecond transient absorption spectra reveal that the excited states of J-aggregate are the radiative states, and J-aggregate can facilitate stimulated emission. Consequently, the J-aggregated nanoparticles (NPs) display a peak emission at 1124 nm with a high relative quantum yield of 0.81%. The efficient NIR-II emission, good photothermal effect, and biocompatibility make the J-aggregated NPs demonstrate efficient antitumor efficacy via fluorescence/photoacoustic imaging-guided phototherapy. The paradigm illustrates that tuning the aggregate states of NIR-II dye via spiro-functionalized strategy is an effective approach to enhance photo-theranostic performance.

2.
Food Chem ; 450: 139353, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636376

RESUMO

Understanding neural pathways and cognitive processes involved in the transformation of dietary fats into sensory experiences has profound implications for nutritional well-being. This study presents an efficient approach to comprehending the neural perception of fat taste using electroencephalogram (EEG). Through the examination of neural responses to different types of fatty acids (FAs) in 45 participants, we discerned distinct neural activation patterns associated with saturated versus unsaturated fatty acids. The spectrum analysis of averaged EEG signals revealed notable variations in δ and α-frequency bands across FA types. The topographical distribution and source localization results suggested that the brain encodes fat taste with specific activation timings in primary and secondary gustatory cortices. Saturated FAs elicited higher activation in cortical associated with emotion and reward processing. This electrophysiological evidence enhances our understanding of fundamental mechanisms behind fat perception, which is helpful for guiding strategies to manage hedonic eating and promote balanced fat consumption.


Assuntos
Encéfalo , Gorduras na Dieta , Eletroencefalografia , Percepção Gustatória , Humanos , Feminino , Adulto Jovem , Adulto , Masculino , Encéfalo/fisiologia , Gorduras na Dieta/metabolismo , Gorduras na Dieta/análise , Paladar , Ácidos Graxos/química , Ácidos Graxos/metabolismo
3.
J Mater Chem B ; 12(17): 4197-4207, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595311

RESUMO

Second near-infrared (NIR-II) fluorescence imaging shows huge application prospects in clinical disease diagnosis and surgical navigation, while it is still a big challenge to exploit high performance NIR-II dyes with long-wavelength absorption and high fluorescence quantum yield. Herein, based on planar π-conjugated donor-acceptor-donor systems, three NIR-II dyes (TP-DBBT, TP-TQ1, and TP-TQ2) were synthesized with bulk steric hindrance, and the influence of acceptor engineering on absorption/emission wavelengths, fluorescence efficiency and photothermal properties was systematically investigated. Compared with TP-DBBT and TP-TQ2, the TP-TQ1 based on 6,7-diphenyl-[1,2,5]thiadiazoloquinoxaline can well balance absorption/emission wavelengths, NIR-II fluorescence brightness and photothermal effects. And the TP-TQ1 nanoparticles (NPs) possess high absorption ability at a peak absorption of 877 nm, with a high relative quantum yield of 0.69% for large steric hindrance hampering the close π-π stacking interactions. Furthermore, the TP-TQ1 NPs show a desirable photothermal conversion efficiency of 48% and good compatibility. In vivo experiments demonstrate that the TP-TQ1 NPs can serve as a versatile theranostic agent for NIR-II fluorescence/photoacoustic imaging-guided tumor phototherapy. The molecular planarization strategy provides an approach for designing efficient NIR-II fluorophores with extending absorption/emission wavelength, high fluorescence brightness, and outstanding phototheranostic performance.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Quinoxalinas , Tiadiazóis , Quinoxalinas/química , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Camundongos , Humanos , Tiadiazóis/química , Nanomedicina Teranóstica , Estrutura Molecular , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Imagem Óptica , Camundongos Endogâmicos BALB C , Feminino , Fototerapia/métodos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/química , Tamanho da Partícula
4.
Cell Metab ; 36(2): 408-421.e5, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325336

RESUMO

Statins are currently the most common cholesterol-lowering drug, but the underlying mechanism of statin-induced hyperglycemia is unclear. To investigate whether the gut microbiome and its metabolites contribute to statin-associated glucose intolerance, we recruited 30 patients with atorvastatin and 10 controls, followed up for 16 weeks, and found a decreased abundance of the genus Clostridium in feces and altered serum and fecal bile acid profiles among patients with atorvastatin therapy. Animal experiments validated that statin could induce glucose intolerance, and transplantation of Clostridium sp. and supplementation of ursodeoxycholic acid (UDCA) could ameliorate statin-induced glucose intolerance. Furthermore, oral UDCA administration in humans alleviated the glucose intolerance without impairing the lipid-lowering effect. Our study demonstrated that the statin-induced hyperglycemic effect was attributed to the Clostridium sp.-bile acids axis and provided important insights into adjuvant therapy of UDCA to lower the adverse risk of statin therapy.


Assuntos
Intolerância à Glucose , Inibidores de Hidroximetilglutaril-CoA Redutases , Resistência à Insulina , Microbiota , Humanos , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , Intolerância à Glucose/tratamento farmacológico , Ácidos e Sais Biliares , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico
5.
Phytomedicine ; 126: 155410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367422

RESUMO

BACKGROUND: Chronic airway inflammation and hyperresponsiveness are characteristics of asthma. The isoquinoline alkaloid protopine (PRO) has been shown to exert anti-inflammatory effects, but its mechanism of action in asthma is not known. PURPOSE: Investigate the protective properties of PRO upon asthma and elucidate its mechanism. STUDY DESIGN AND METHODS: The effects of PRO in asthma treatment were assessed by histology, biochemical analysis, and real-time reverse transcription-quantitative polymerase chain reaction. Then, we integrated molecular docking, western blotting, cellular experiments, immunohistochemistry, immunofluorescence analysis, flow cytometry, and metabolomics analysis to reveal its mechanism. RESULTS: In vivo, PRO therapy reduced the number of inflammatory cells (eosinophils, leukocytes, monocytes) in bronchoalveolar lavage fluid (BALF), ameliorated pathologic alterations in lung tissues, and inhibited secretion of IgG and histamine. Molecular docking showed that PRO could dock with the proteins of TLR4, MyD88, TRAF6, TAK1, IKKα, and TNF-α. Western blotting displayed that PRO inhibited the TLR4/NF-κB signaling pathway. PRO regulated expression of the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3) inflammasome, gasdermin D, caspase-1, and drove caspase-1 inactivation to affect inflammatory responses by inhibiting the NLRP3 inflammasome. In vitro, 24 h after treatment with PRO, cell activity, as well as levels of reactive oxygen species (ROS) and interleukin (IL)-1ß and IL-18, decreased significantly. Immunofluorescence staining showed that PRO decreased expression of TLR4 and MyD88 in vitro. PRO decreased nuclear translocation of NF-κB p65. Twenty-one potential biomarkers in serum were identified using metabolomics analysis, and they predominantly controlled the metabolism of phenylalanine, tryptophan, glucose, and sphingolipids. CONCLUSION: PRO reduced OVA-induced asthma. The underlying mechanism was associated with the TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome-mediated pyroptosis.


Assuntos
Asma , Benzofenantridinas , Alcaloides de Berberina , NF-kappa B , Humanos , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Ovalbumina , Piroptose , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Asma/induzido quimicamente , Asma/tratamento farmacológico , Inflamação , Caspase 1/metabolismo
6.
Zhen Ci Yan Jiu ; 48(11): 1151-1158, 2023 Nov 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37984913

RESUMO

OBJECTIVES: To observe the curative effect of fire needling pricking pericranial tender points combined with filiform needling on tension-type headache (TTH) and its effect on pericranial muscle tenderness, and explore the correlation between changes of headache symptoms and pericranial muscle tenderness in TTH, to analyze the influence of pericranial muscle tenderness on TTH. METHODS: A total of 41 TTH patients in the treatment group and 38 TTH patients in the control group completed the study. The patients in the treatment group were treated with fire needling at pericranial tender points combined with filiform needling at Baihui (GV20), Sishencong (EX-HN1), Shenting (GV24), Touwei (ST8) and Fengchi (GB20). The patients in the control group were only treated with the same filiform needling as the treatment group. Patients in the two groups were treated twice a week for 8 weeks. Before and after treatment, the days of headache onset, the number and distribution of pericranial muscle tender points were recorded, the degree of headache was evaluated by visual analogue scale and the threshold of pericranial muscle tender points were measured. The correlations between the changes of the days and degree of headache onset and the changes of the number and threshold of pericranial muscle tender points were analyzed. The effective rates in the two groups were calculated. RESULTS: Compared with those before treatment, the days of headache onset and the degree of headache were decreased (P<0.05) in the two groups;the number of pericranial muscle tender points was decreased (P<0.05) and the tenderness threshold was increased (P<0.05) in the treatment group. After treatment, compared with the control group, the days of headache onset, the degree of headache, and the number of pericranial muscle tender points were decreased (P<0.05), and the tenderness threshold was increased (P<0.05) in the treatment group. The decrease of the days and degree of headache was positively correlated with the decrease of number and the increase of tenderness threshold of pericranial muscle tender points (P<0.05). The effective rate in the treatment group was 87.80% (36/41), which was higher than 57.89% (22/38) in the control group (P<0.05). The most common anatomic location of tender points in baseline was superior trapezius muscle, followed by sternocleidomastoid muscle, superior nuchal line, temporal muscle, masseter muscle, etc. CONCLUSIONS: The fire needling at the pericranial muscle tender points combined with filiform needling on TTH patients can significantly improve the clinical symptoms and reduce the pericranial muscle tenderness. The pericranial muscle tenderness is an important factor in the pathogenesis of TTH.


Assuntos
Cefaleia do Tipo Tensional , Humanos , Cefaleia do Tipo Tensional/terapia , Mialgia/complicações , Medição da Dor/efeitos adversos , Músculos , Cefaleia/terapia
7.
BMC Complement Med Ther ; 23(1): 200, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330478

RESUMO

BACKGROUND: Chronic heart failure (CHF) is actually a disease caused by an imbalanced energy metabolism between myocardial energy demand and supply, ultimately resulting in abnormal myocardial cell structure and function. Energy metabolism imbalance plays an important role in the pathological process of chronic heart failure (CHF). Improving myocardial energy metabolism is a new strategy for the treatment of CHF. Shengxian decoction (SXT), a well-known traditional Chinese medicine (TCM) formula, has good therapeutic effects on the cardiovascular system. However, the effects of SXT on the energy metabolism of CHF is unclear. In this study, we probed the regulating effects of SXT on energy metabolism in CHF rats using various research methods. METHODS: High-performance liquid chromatography (HPLC) analysis was used to perform quality control of SXT preparations. Then, SD rats were randomly assigned into 6 groups: sham, model, positive control (trimetazidine) and high-, middle-, and low-dose SXT groups. Specific reagent kits were used to detect the expression levels of ALT and AST in rats' serum. Echocardiography was used to evaluate cardiac function. H&E, Masson and TUNEL staining were performed to examine myocardial structure and myocardial apoptosis. Colorimetry was used to determine myocardial ATP levels in experimental rats. Transmission electron microscopy was used to observe the ultrastructure of myocardial mitochondria. ELISA was used to estimate CK, cTnI, and NT-proBNP levels, and LA、FFA、MDA、SOD levels. Finally, Western blotting was used to examine the protein expression of CPT-1, GLUT4, AMPK, p-AMPK, PGC-1α, NRF1, mtTFA and ATP5D in the myocardium. RESULTS: HPLC showed that our SXT preparation method was feasible. The results of ALT and AST tests indicate that SXT has no side effect on the liver function of rats. Treatment with SXT improved cardiac function and ventricular remodelling and inhibited cardiomyocyte apoptosis and oxidative stress levels induced by CHF. Moreover, CHF caused decrease ATP synthesis, which was accompanied by a reduction in ATP 5D protein levels, damage to mitochondrial structure, abnormal glucose and lipid metabolism, and changes in the expression of PGC-1α related signal pathway proteins, all of which were significantly alleviated by treatment with SXT. CONCLUSION: SXT reverses CHF-induced cardiac dysfunction and maintains the integrity of myocardial structure by regulating energy metabolism. The beneficial effect of SXT on energy metabolism may be related to regulating the expression of the PGC-1α signalling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Insuficiência Cardíaca , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Quinases Ativadas por AMP/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo
8.
Sleep Med ; 107: 126-136, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37167876

RESUMO

BACKGROUND: Insomnia is the second most common neuropsychiatric disorder, but the current treatments are not very effective. There is therefore an urgent need to develop better treatments. Transcutaneous electrical nerve stimulation (TENS) may be a promising means of treating insomnia. OBJECTIVE: This work aims to explore whether and how TENS modulate sleep and the effect of stimulation waveforms on sleep. METHODS: Forty-five healthy subjects participated in this study. Electroencephalography (EEG) data were recorded before and after four mode low-frequency (1 Hz) TENS with different waveforms, which were formed by superimposing sine waves of different high frequencies (60-210 Hz) and low frequencies (1-6 Hz). The four waveform modes are formed by combining sine waves of varying frequencies. Mode 1 (M1) consists of a combination of high frequencies (60-110 Hz) and low frequencies (1-6 Hz). Mode 2 (M2) is made up of high frequencies (60-210 Hz) and low frequencies (1-6 Hz). Mode 3 (M3) consists of high frequencies (110-160 Hz) and low frequencies (1-6 Hz), while mode 4 (M4) is composed of high frequencies (160-210 Hz) and low frequencies (1-6 Hz). For M1, M3 and M4, the high frequency portions of the stimulus waveforms account for 50%, while for M2, the high frequency portion of the waveform accounts for 65%. For each mode, the current intensities ranged from 4 mA to 7 mA, with values for each participant adjusted according to individual tolerance. During stimulation, the subjects were stimulated at the greater occipital nerve by the four mode TENS. RESULTS: M1, M3, and M4 slowed down the frequency of neural activity, broadened the distribution of theta waves, and caused a decrease in activity in wakefulness-related regions and an increase in activity in sleep-related regions. However, M2 has the opposite modulation effect. CONCLUSION: These results indicated that low-frequency TENS (1 Hz) may facilitate sleep in a waveform-specific manner. Our findings provide new insights into the mechanisms of sleep modulation by TENS and the design of effective insomnia treatments.


Assuntos
Distúrbios do Início e da Manutenção do Sono , Estimulação Elétrica Nervosa Transcutânea , Humanos , Estimulação Elétrica Nervosa Transcutânea/métodos , Projetos Piloto , Distúrbios do Início e da Manutenção do Sono/terapia , Sono
10.
Int Urol Nephrol ; 55(3): 489-501, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36479677

RESUMO

Overactive bladder syndrome (OAB) has made increasing progress in mechanism and treatment research. Traditional Chinese medicine (TCM) is a common complementary therapy for OAB, and it has been found to be effective. However, the intervention mechanism of TCM in the treatment of OAB is still unclear. The aim of this review is to consolidate the current knowledge about the mechanism of TCM: acupuncture, moxibustion, herbs in treating OAB, and the animal models of OAB commonly used in TCM. Finally, we put forward the dilemma of TCM treatment of OAB and discussed the insufficiency and future direction of TCM treatment of OAB.


Assuntos
Terapia por Acupuntura , Bexiga Urinária Hiperativa , Animais , Bexiga Urinária Hiperativa/terapia , Medicina Tradicional Chinesa , Modelos Animais
11.
J Ethnopharmacol ; 298: 115573, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917893

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mufangji decoction (MFJD), a famous traditional Chinese medicine formula in Synopsis of Golden Chamber (Jingui yaolue), has been utilized to treat cough and asthma and release chest pain over 2000 years in China. Chinese old herbalist doctor use MFJD to treat lung cancer and cancerous pleural fluid, but the preventive effect of MFJD on lung cancer and the underlying mechanism are indefinite. AIM OF THE STUDY: The goal of this study is to explore the efficacy and mechanism of Mufangji decoction preventing lung cancer referring to the traditional use. MATERIALS AND METHODS: Tumor allograft experiment and host versus tumor experiment were used to observe the direct anti-tumor effect and indirect anti-tumor immune effect, the mouse lung carcinogenic model was used to evaluate the dose-response and the preventive effect of MFJD on lung cancer. The active ingredients of MFJD were obtained by UPLC-MS/MS. The potential targets of MFJD were screened by network pharmacology and transcriptomics. The therapeutic targets and pathways of MFJD on lung cancer were obtained by protein-protein interaction, molecular docking and David database. The predicted results were verified in vitro and in vivo. RESULTS: MFJD could significantly prevent tumor growth in host versus tumor experiment but could not in tumor allograft experiment, indicating an anti-tumor immune effect against lung cancer. MFJD could reduce lung nodules with a dose-response in mouse lung carcinogenic model. Myeloperoxidase (MPO) was selected as the core target due to the highest degree value in Protein-Protein interaction network and had potently binding activity to sinomenine and dehydrocostus lactone in molecular docking. In vivo, MPO-expressed neutrophils are negatively correlated with lung cancer progression and MFJD could promote the neutrophil-related immune surveillance. In vitro, sinomenine and dehydrocostus lactone could promote neutrophil phagocytosis, MPO and ROS production in a dose dependent manner. The major compounds from MFJD were identified to regulate 36 targets for lung cancer prevention by UPLC-MS/MS, network pharmacology and transcriptomics. David database exhibited that MFJD plays an important role in immunoregulation by modulating 4 immune-related biological processes and 3 immune-related pathways. CONCLUSIONS: MFJD prevents lung cancer by mainly promoting MPO expression to maintain neutrophil immune surveillance, its key compounds are sinomenine and dehydrocostus lactone.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Animais , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Espectrometria de Massas em Tandem , Transcriptoma
12.
J Ethnopharmacol ; 292: 115138, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35245631

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dioscorea nipponica Makino as a Chinese folk medicine has been used for the treatment of chronic bronchitis, cough, and asthma. Several studies have established the antimetastatic potential of Dioscorea nipponica Makino extract. Dioscin is a major bioactive compound in Dioscorea nipponica Makino and has anti-tumor property in lung cancer cell lines. However, the preventive effect of dioscin against lung cancer and its key mechanism haven't been identified yet. AIM OF STUDY: To identify the prevention effect of dioscin on lung cancer and explore its key mechanism based on network pharmacology and experimental validation. METHODS: The potential targets of dioscin were obtained from the HERB database. The therapeutic targets of lung cancer were acquired from the GeneCards database. Protein-protein interaction network (PPI) was constructed in the STRING 11.0 database. The David database was used for enrichment analysis. Molecular Docking was finished by the AutoDock Vina. NSCLC cell lines and mouse lung cancer model were used to confirm the prevention effect of dioscin on lung cancer and its key mechanism. RESULTS: 76 potential targets of dioscin were identified to be involved in lung cancer treatment, which refer to 512 biological processes, 47 molecular functions, 77 cellular components and 107 signal pathways. The molecular docking suggested that dioscin might bind to AKT1, Caspase3, TP53, C-JUN and IL-6. The DARTS indicated that dioscin could bind to AKT1. In vitro, dioscin could decrease proliferation, invasion and migration in A549 and PC-9 cells with the significant reduction in the expression of p-AKT, MMP2, and PCNA. In vivo, dioscin could reduce lung nodules, lung injury, and mortality in mouse lung cancer model with reducing the expression of p-AKT, MMP2, PCNA and increasing the expression of active-caspase3. CONCLUSION: Dioscin could prevent lung cancer and its key target is AKT1 kinase, a center protein of PI3K/AKT signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Animais , Diosgenina/análogos & derivados , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Metaloproteinase 2 da Matriz , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/metabolismo , Antígeno Nuclear de Célula em Proliferação , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Food Nutr Res ; 652021.
Artigo em Inglês | MEDLINE | ID: mdl-34908920

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) outbreak is progressing rapidly, and poses significant threats to public health. A number of clinical practice results showed that traditional Chinese medicine (TCM) plays a significant role for COVID-19 treatment. OBJECTIVE: To explore the active components and molecular mechanism of semen armeniacae amarum treating COVID-19 by network pharmacology and molecular docking technology. METHODS: The active components and potential targets of semen armeniacae amarum were retrieved from traditional Chinese medicine systems pharmacology (TCMSP) database. Coronavirus disease 2019-associated targets were collected in the GeneCards, TTD, OMIM and PubChem database. Compound target, compound-target pathway and medicine-ingredient-target disease networks were constructed by Cytoscape 3.8.0. Protein-protein interaction (PPI) networks were drawn using the STRING database and Cytoscape 3.8.0 software. David database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The main active components were verified by AutoDock Vina 1.1.2 software. A lipopolysaccharide (LPS)-induced lung inflammation model in Institute of Cancer Research (ICR) mice was constructed and treated with amygdalin to confirm effects of amygdalin on lung inflammation and its underlying mechanisms by western blot analyses and immunofluorescence. RESULTS: The network analysis revealed that nine key, active components regulated eight targets (Proto-oncogene tyrosine-protein kinase SRC (SRC), interleukin 6 (IL6), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 3 (MAPK3), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), HRAS proto-oncogene (HRAS), caspase-3 (CASP3)). Gene ontology and KEGG enrichment analysis suggested that semen armeniacae amarum plays a role in COVID-19 by modulating 94 biological processes, 13 molecular functions, 15 cellular components and 80 potential pathways. Molecular docking indicated that amygdalin had better binding activity to key targets such as IL6, SRC, MAPK3, SARS coronavirus-2 3C-like protease (SARS-CoV-2 3CLpro) and SARS-CoV-2 angiotensin converting enzyme II (ACE2). Experimental validation revealed that the lung pathological injury and inflammatory injury were significantly increased in the model group and were improved in the amygdalin group. CONCLUSION: Amygdalin is a candidate compound for COVID-19 treatment by regulating IL6, SRC, MAPK1 EGFR and VEGFA to involve in PI3K-Akt signalling pathway, VEGF signalling pathway and MAPK signalling pathway. Meanwhile, amygdalin has a strong affinity for SARS-CoV-2 3CLpro and SARS-CoV-2 ACE2 and therefore prevents the virus transcription and dissemination.

14.
Natl Sci Rev ; 8(2): nwaa160, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691571

RESUMO

The hypoxic tumor microenvironment is characterized by disordered vasculature and rapid proliferation of tumors, resulting from tumor invasion, progression and metastasis. The hypoxic conditions restrict efficiency of tumor therapies, such as chemotherapy, radiotherapy, phototherapy and immunotherapy, leading to serious results of tumor recurrence and high mortality. Recently, research has concentrated on developing functional nanomaterials to treat hypoxic tumors. In this review, we categorize such nanomaterials into (i) nanomaterials that elevate oxygen levels in tumors for enhanced oxygen-dependent tumor therapy and (ii) nanomaterials with diminished oxygen dependence for hypoxic tumor therapy. To elevate oxygen levels in tumors, oxygen-carrying nanomaterials, oxygen-generating nanomaterials and oxygen-economizing nanomaterials can be used. To diminish oxygen dependence of nanomaterials for hypoxic tumor therapy, therapeutic gas-generating nanomaterials and radical-generating nanomaterials can be used. The biocompatibility and therapeutic efficacy of these nanomaterials are discussed.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34616480

RESUMO

Many ingredients in Wenshen Shengjing Decoction (WSSJD) can cause epigenetic changes in the development of different types of cells. It is not yet known whether they can cause epigenetic changes in sperms or early embryos. Here, we investigated the role of WSSJD in epigenetic modifications of sperms or early embryos and early embryo development. A mouse model with spermatogenesis disorders was established with cyclophosphamide (CPA). WSSJD was administrated for 30 days. The male model mice after the treatment were mated with the female mice treated with superovulation. The embryo development rate of each stage was calculated. Immunofluorescence staining was used to detect the expression of H3K27me3 in sperm, pronuclear embryos, and 2-cell embryos. Western blotting was used to detect the expression of histone demethylase KDM6A and methyltransferase EZH2 in 2-cell embryos with developmental arrest. The expressions of zygotic genome activation genes (ZSCAN4, E1F1AX, HSPA1A, ERV4-2, and MYC) in 2-cell embryos with developmental arrest were analyzed with qRT-PCR. Comparing with the control group, CPA destroyed the development of seminiferous epithelium, significantly increased the expression level of H3K27me3 in sperm, reduced the expression ratio of H3K27me3 in female and male pronuclei, delayed the development of 2-cell embryos, and increased the developmental arrest rate and degeneration rate of 2-cell embryos. Moreover, the expressions of EZH2 and H3K27me3 were significantly increased in the 2-cell embryos with developmental arrest, and the expression of zygotic genome activation genes (ZSCAN4, E1F1AX, HSPA1A, ERV4-2, and MYC) was significantly decreased. Compared with the CPA group, WSSJD promoted the development of seminiferous epithelium, maintained a low level of H3K27me3 modification in sperm and male pronucleus, significantly increased the development rate of 2-cell embryos and 3-4 cell embryos, and reduced the developmental arrest rate and degeneration rate of 2-cell embryos. WSSJD may promote early embryonic development by maintaining a low level of H3K27me3 modification in sperm and male pronucleus and regulating the zygotic genome activation in mice with spermatogenesis disorders induced by CPA.

16.
Innovation (Camb) ; 2(1): 100082, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557737

RESUMO

Phototheranostics integrates deep-tissue imaging with phototherapy (containing photothermal therapy and photodynamic therapy), holding great promise in early diagnosis and precision treatment of cancers. Recently, second near-infrared (NIR-II) fluorescence imaging exhibits the merits of high accuracy and specificity, as well as real-time detection. Among the NIR-II fluorophores, organic small molecular fluorophores have shown superior properties in the biocompatibility, variable structure, and tunable emission wavelength than the inorganic NIR-II materials. What's more, some small molecular fluorophores also display excellent cytotoxicity when illuminated with the NIR laser. This review summarizes the progress of small molecular NIR-II fluorophores with different central cores for cancer phototheranostics in the past few years, focusing on the molecular structures and phototheranostic performances. Furthermore, challenges and prospects of future development toward clinical translation are discussed.

17.
Artigo em Inglês | MEDLINE | ID: mdl-34221077

RESUMO

This work is carried out to evaluate the clinical efficacy of Sanzi Yangqin decoction (SZYQD) treating chronic obstructive pulmonary disease (COPD) and to analyze its mechanism. The clinical efficacy of SZYQD treating COPD was evaluated by meta-analysis, and its mechanism was analyzed by network pharmacology. Molecular docking validation of the main active compounds and the core targets was performed by AutoDock vina software. A cigarette smoke (CS) and LPS-induced COPD model in ICR mice was constructed to confirm the effects of luteolin on COPD. Results showed that SZYQD has a greater benefit on the total effect (OR = 3.85, 95% CI [3.07, 4.83], P=1) in the trial group compared with the control group. The percentage of forced expiratory volume in one second (FEV1%) (MD = 0.5, 95% CI [0.41, 0.59], P < 0.00001) and first seconds breathing volume percentage of forced vital capacity (FEV1%/FVC) were improved (MD = 5.97, 95% CI [3.23, 8.71], P < 0.00001). There are 27 compounds in SZYQD targeting 104 disease targets related to COPD. PPI network analysis indicated that EGFR, MMP9, PTGS2, MMP2, APP, and ERBB2 may be the core targets for the treatment of COPD. Molecular docking demonstrated that luteolin in SZYQD showed the strongest binding activity to core targets. Experimental results revealed that the expression of COPD-related targets in lung tissue was significantly increased in the COPD group and was improved in the luteolin group. Our data indicated that SZYQD has a curative effect on COPD and luteolin is a candidate compound for COPD treatment by regulating EGFR, MMP9, PTGS2, MMP2, APP, and ERBB2.

18.
Food Nutr Res ; 652021.
Artigo em Inglês | MEDLINE | ID: mdl-34262419

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an important risk factor for developing lung cancer. Aged citrus peel (chenpi) has been used as a dietary supplement for respiratory diseases in China. OBJECTIVE: To explore the mechanism and candidate compounds of chenpi preventing COPD and its progression to lung cancer. METHODS: The active components and potential targets of chenpi were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Disease-associated targets of COPD and lung cancer were collected in the Gene Cards and TTD database. The component-target network and PPI network were constructed using the Cytoscape 3.8.0 software. David database was used for GO and KEGG enrichment analysis. The main active components were verified by using the autodock Vina 1.1.2 software. Mouse lung cancer with COPD was induced by cigarette smoking (CS) combined with urethane injection to confirm preventing the effect of hesperetin (the candidate compound of chenpi) on COPD progression to lung cancer and its underlying mechanisms. RESULTS: The network analysis revealed that the key active components of chenpi (nobiletin, naringenin, hesperetin) regulate five core targets (AKT1, TP53, IL6, VEGFA, MMP9). In addition, 103 potential pathways of chenpi were identified. Chenpi can prevent COPD and its progression to lung cancer by getting involved in the PI3K-Akt signaling pathway and MAPK signaling pathway. Molecular docking indicated that hesperetin had better binding activity for core targets. In mouse lung cancer with COPD, treatment with hesperetin dose-dependently improved not only lung tissue injury in COPD but also carcinoma lesions in lung cancer. Meanwhile, hesperetin could suppress the protein expression of AKT1, IL6, VEGFA, MMP9 and up-regulate the protein expression of TP53, and thus reduced the risk of COPD progression to lung cancer. CONCLUSION: Hesperetin is a candidate compound of chenpi that helps in preventing COPD and its progression to lung cancer by regulating AKT1, IL6, VEGFA, MMP9 and TP53.

19.
Nanotechnology ; 32(27)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33770766

RESUMO

Tea tree oil, a natural antibacterial compound, cannot be used effectively because of its volatile nature. In this work, a biocompatible carrier was prepared and loaded with tea tree essential oil. The carrier was prepared via the electrostatic or chemical action of aminated mesoporous silica and sodium rosin for achieving a low volatilization rate of tea tree essential oil. A synergistic antibacterial effect was observed between sodium rosin and tea tree essential oil. This method utilized the positive charge of the amino group and the condensation reaction with the carboxyl group to achieve physical and chemical interactions with sodium rosin. Fourier Transform Infrared, Brunauer-Emmet-Teller, Zeta potential, SEM, TEM, and TG were performed to characterize the structure and properties of the samples. Compared to the electrostatic effect, the chemically modified system exhibited a longer sustained release, and the sustained release curve followed the Korsmeyer-Peppas release model. Also, the antibacterial properties of the chemically modified system exhibited better minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) respectively, the MIC and MBC forE. coliwere 0.3 mg ml-1and 0.6 mg ml-1respectively, forS. aureuswere 0.15 mg ml-1and 0.3 mg ml-1respectively. More strikingly, the sample also demonstrated long-term antibacterial performance. Therefore, this work provides a new way for the delivery of volatile antibacterial drugs to achieve sustained-release and long-lasting antibacterial effects.


Assuntos
Antibacterianos/química , Resinas Vegetais/química , Dióxido de Silício/química , Óleo de Melaleuca/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Porosidade , Resinas Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Óleo de Melaleuca/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-33628326

RESUMO

Xuefu Zhuyu Decoction (XFZY) is an ancient compound widely used in the treatment of coronary heart disease. However, its efficacy evaluation is not complete and its mechanism of action is not clear enough. In an attempt to address these problems, the efficacy was evaluated by meta-analysis and the mechanism was elucidated by the network pharmacology method. We systematically searched relevant studies in PubMed, Chinese National Knowledge Infrastructure Database (CNKI), Cochrane Library, Wanfang Data, and other databases from 2007 to 2019. The association between XFZY treatment and CHD was estimated by risk ratio (RR) and corresponding 95% confidence intervals (95% CIs). The compounds and the potential protein targets of XFZY were obtained from TCMSP, and active compounds were selected according to their oral bioavailability and drug similarity. The potential genes of coronary heart disease were obtained from TTD, OMIM, and GeneCards. The potential pathways related to genes were determined by GO and KEGG pathway enrichment analyses. The compound-target and compound-target-pathway networks were constructed. Molecular docking validates the component and the target. A total of 21 studies including 1844 patients were enrolled in the present meta-analysis, indicating that XFZY has a greater beneficial on total effect (fixed effect RR = 1.30; 95% Cl: 1.24-1.36; P=0.82; I 2 = 0.0%) and electrocardiogram efficacy (fixed effect RR = 1.40; 95% Cl: 1.26-1.56; P=0.96; I 2 = 0.0%) compared with the control group. A total of 1342 components in XFZY were obtained, among which, 241 were chosen as bioactive components. GO and KEGG analyses got top 10 significantly enriched terms and 10 enriched pathways. The C-T network included 192 compounds and 3085 targets, whereas the C-T-P network included 10 compounds, 109 targets, and 5 pathways. There was a good binding activity between the components and the targets. XFZY has the curative effect on coronary heart disease, and its mechanism is related to 10 compounds, 10 core targets, and 5 pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA