Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Funct Integr Genomics ; 24(1): 26, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329581

RESUMO

The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua's morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC-MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua's low P adaptation.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Fertilizantes , Perfilação da Expressão Gênica , Lagos , Fósforo
2.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5410-5418, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114135

RESUMO

Aconiti Lateralis Radix Praeparata polysaccharides(AP) are a class of bioactive macromolecules extracted from the herbs of Aconiti Lateralis Radix Praeparata and its various processed products. Since the AP was first separated in 1986, its pharmacological effects include immune regulation, anti-tumor, anti-depression, organ protection, hypoglycemia, and anti-inflammatory had been found. In recent years, with the development of polysaccharide extraction, separation, and structure identification technologies, more than 20 kinds of AP have been separated from Aconiti Lateralis Radix Praeparata and its processed products, and they have ob-vious differences in relative molecular weight, monosaccharide composition, glycosidic bond, structural characteristics, and biological activities. In particular, AP may be dissolved, degraded, or allosteric under the complex processing environment of fermentation, soaking, cooking, etc., leading to the diversified structure of AP, which provides a possibility for further understanding of the structure-activity relationship of AP. Therefore, this study systematically reviewed the research progress on the structure and structure-activity relationship of AP, summarized the biological activity and potential action mechanism of AP, and discussed the technical challenges in the development and application of AP, so as to promote the quality control and further development and utilization of AP.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Aconitum/química , Polissacarídeos/farmacologia , Relação Estrutura-Atividade , Tecnologia
3.
Funct Integr Genomics ; 23(2): 141, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37118364

RESUMO

Artemisia annua L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work aimed to explore the genetic and metabolic response of A. annua to hardly soluble aluminum phosphate (AlPO4, AlP), using soluble monopotassium phosphate (KH2PO4, KP) as a control. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, leaf areas, and total biomass of A. annua. Conversely, LC-MS analysis revealed a significant increase in artemisinin concentration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) between the AlP and the KP. GH3, SAUR, CRE1, and PYL, all involved in plant hormone signal transduction, showed differential expression. Furthermore, despite the downregulation of HMGR in the artemisinin biosynthesis pathway, the majority of genes (ACAT, FPS, CYP71AV1, and ALDH1) were upregulated, resulting in increased artemisinin accumulation in the AlP. In addition, 12 transcription factors, including GATA and MYB, were upregulated in response to AlP, confirming their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in A. annua L. in response to hardly soluble phosphorus fertilizer.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/química , Artemisia annua/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Artemisininas/química , Artemisininas/metabolismo , Fosfatos/metabolismo , Análise de Sequência de RNA , Fósforo/metabolismo
4.
Front Pharmacol ; 13: 1026219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324672

RESUMO

Fuzi, the lateral root of A. carmichaelii Debx., is a typical traditional herbal medicine with both poisonousness and effectiveness, and often used in the treatment of heart failure and other heart diseases. In this review, we searched domestic and foreign literature to sort out the molecular mechanisms of cardiotonic and cardiotoxicity of Fuzi, also including its components. The major bioactive components of Fuzi for cardiotonic are total alkaloids, polysaccharide and the water-soluble alkaloids, with specific mechanisms manifested in the inhibition of myocardial fibrosis, apoptosis and autophagy, and improvement of mitochondrial energy metabolism, which involves RAAS system, PI3K/AKT, JAK/STAT, AMPK/mTOR signaling pathway, etc. Diester-diterpenoid alkaloids in Fuzi can produce cardiotoxic effects by over-activating Na+ and Ca2+ ion channels, over-activating NLRP3/ASC/caspase-3 inflammatory pathway and mitochondria mediated apoptosis pathway. And three clinically used preparations containing Fuzi are also used as representatives to summarize their cardiac-strengthening molecular mechanisms. To sum up, Fuzi has shown valuable cardiotonic effects due to extensive basic and clinical studies, but its cardiotonic mechanisms have not been systematically sorted out. Therefore, it is a need for deeper investigation in the mechanisms of water-soluble alkaloids with low content but obvious therapeutic effect, as well as polysaccharide.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34539799

RESUMO

According to Traditional Chinese Medicine (TCM), Aconiti Radix Cocta (AC) is clinically employed to expel wind, remove dampness, and relieve pain. We evaluated the antirheumatoid arthritis (RA) activities and underlying mechanisms of AC. The chemical constituents of AC were analyzed by high-performance liquid chromatography (HPLC) using three reference compounds (benzoylaconitine, benzoylmesaconine, and benzoylhypacoitine). The anti-RA effects of AC were evaluated in adjuvant-induced arthritis (AIA) rats by hind paw volume and histopathological analysis. The effects of AC on inflammatory cytokines (IL-1ß and IL-17A) were determined by enzyme-linked immunosorbent assay. The regulation of cyclooxygenases (COX-1 and/or COX-2) was determined by Western blot and real-time quantitative reverse transcription polymerase chain reaction analyses. AC significantly reduced paw swelling, attenuated the inflammation and bone destruction in joint tissues, and reduced IL-1ß and IL-17A in the serum. Moreover, AC downregulated the expression of COX-1 and COX-2 in the synovial tissues. We also identified that AC possesses significant anti-RA activities on AIA, which may be ascribed to the regulation of inflammatory cytokines IL-1ß and IL-17, as well as to the inhibition of arachidonic acid signaling pathways. Our findings provide theoretical support for AC as an effective nature-derived therapeutic agent for RA treatment.

6.
iScience ; 24(9): 102997, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34505009

RESUMO

Magnolia officinalis, a representative tall aromatic tree of the Magnoliaceae family, is a medicinal plant that is widely used in diverse industries from medicine to cosmetics. We report a chromosome-scale draft genome of M. officinalis, in which ∼99.66% of the sequences were anchored onto 19 chromosomes with the scaffold N50 of 76.62 Mb. We found that a high proportion of repetitive sequences was a common feature of three Magnoliaceae with known genomic data. Magnoliids were a sister clade to eudicots-monocots, which provided more support for understanding the phylogenetic position among angiosperms. An ancient duplication event occurred in the genome of M. officinalis and was shared with Lauraceae. Based on RNA-seq analysis, we identified several key enzyme-coding gene families associated with the biosynthesis of lignans in the genome. The construction of the M. officinalis genome sequence will serve as a reference for further studies of Magnolia, as well as other Magnoliaceae.

7.
Mitochondrial DNA B Resour ; 6(8): 2149-2150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250240

RESUMO

Aconitum scaposum Franch 1894 belongs to the Genus Aconitum and Subgenus Lycoctonum (Ranunculaceae). It is widely distributed in China and adjacent areas, used as herbal medicine and had highy toxic components. This species has little reasearch information, especially its chloroplast (cp) genome information being unclear. Therefore, with the method of high salt and low pH to extract the cp of A. scaposum, we sequenced and assembled the complete cp genome of A. scaposum using Illumina high-throughput sequencing platform. The results showed the cp genome of A. scaposum was 157 688 bp in length, including a pair of inverted repeated regions (IRa 26 156 bp and IRb 26 232 bp, respectively), large single copy region (LSC 69 309 bp) and small single copy region (SSC 16 917 bp). And cp genome of A. scaposum consisted of 145 unique genes, 8 ribosomal RNA (rRNA) genes and 38 transfer RNA (tRNA) genes, with GC content was 38%. Meanwhile, based on the cp complete genome, we performed the phylogenetic tree of 66 species with maximum likelihood (ML) method, respectively. Among them, we selected one Delphinium species as the outgroup and the bootstrap of each braches were greater than 90%. The results indicated that the phylogenetic relationship of A. scaposum was relatively closely related to A. scaposum var. vaginatum compared to other Aconitum species.

8.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1633-1640, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32489043

RESUMO

According to the major differences of agricultural characters among various Aconitum carmichaelii cultivars, the lateral roots of Ai-leaf and Dahua-leaf A.carmichaelii plants were selected as the research objects. And the Illumina Hiseq high-throughput platform was used for transcriptome sequencing, assembly and annotation. We mostly focused the activity differential transcripts, metabolism pathways and enrichment functions. The results showed that a total of 52.23 Gb nucleotide bases were obtained from 6 A.carmichaelii transcriptome databases, with 52 471 unigenes and 28 765 matched annotation. There were 1 052 transcripts of the two kinds of A.carmichaelii with a difference of more than 2 times, 808 of which were annotated. Through GO and COG analysis, they were found to mainly concentrate in metabolic processes, cell processes, catalytic processes and transport processes, connections and other functions. KEGG analysis showed that 262 DEGs were enriched in 78 metabolic pathways, such as starch and sucrose metabolism, plant hormone signaling, carbon compounded transport etc. It was implied that many genes in Dahua-leaf A.carmichaelii regulated the conversion of starch to small molecules such as sucrose, glucose and maltose, while some other genes regulated the accumulation of amino acids, which may be the important biological principles for the formation of the differences between the quality and disease resistance of two leaf types of A.carmichaelii. This study will provide reference datas for A.carmichaelii breeding research.


Assuntos
Aconitum , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular
9.
Zhongguo Zhong Yao Za Zhi ; 44(1): 131-140, 2019 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30868824

RESUMO

In this study,transcriptomics technique was used to investigate the mechanism of action of Aconiti Lateralis Radix Praeparata on acute heart failure rats induced by propafenone hydrochloride.First,rats were randomly divided into normal group,model group and administration group(1.25,2.5,5 g·kg-1).A rat with acute heart failure was constructed by intravenous femoral administration of proparone hydrochloride.The changes of heart rate,+dp/dtmaxand-dp/dtmaxat 5,10,20,30 and 60 min were recorded.Then another group of rats were given the same drug delivery method.In another group of animals,serum TNF-α could be determined by ELISA with the same dosage method.High-throughput sequencing technology was used to detect all gene expression differences in cardiac tissue samples of rats with acute heart failure.Through functional annotation and enrichment analysis,gene expression signaling pathways of rats with acute heart failure and rats with post-administration heart failure were screened out.The results showed that heart rate and LV+dp/dtmaxand LV-dp/dtmaxwere significantly decreased in the model group(P<0.05),while heart rate and LV+dp/dtmax and LV-dp/dtmaxwere significantly increased in the drug group(P<0.05,P<0.01).Moreover,ANP,BNP and TNF-α in acute heart failure rats was significantly decreased in high-dose aconite decoction group(P<0.05).Transcriptomics analysis showed that the mechanism of action was mainly related to activation of PI3 K-AKT signaling pathway and Jak-STAT pathway.Compared with the model group,aconite decoction up-regulated the expression of phosphatidylinostol 3-kinase(PI3 K),lysophosphatidic acid(LAP3),Bcl-3 and STAT genes,and down-regulated the expression of integrin(ITGA),nuclear orphan receptor(Nur77) genes.It could be concluded that the mechanism of aconite in treating acute heart failure rats may be related to the regulation of the PI3 k-Akt/Jak-STAT pathway.


Assuntos
Aconitum/química , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Transcriptoma , Animais , Coração , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Distribuição Aleatória , Ratos , Transdução de Sinais
10.
PLoS One ; 13(10): e0205891, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379951

RESUMO

Aconitum carmichaelii, commonly known as Fuzi, is a typical traditional Chinese medicine (TCM) herb that has been grown for more than one thousand years in China. Although root rot disease has been seriously threatening this crop in recent years, few studies have investigated root rot disease in Fuzi, and no pathogens have been identified. In this study, fungal libraries from rhizosphere soils were constructed by internal transcribed spacer (ITS) sequencing using the HiSeq 2500 high-throughput platform. A total of 948,843 tags were obtained from 17 soil samples, and these corresponded to 195,583,495 nt. At 97% identity, the libraries yielded 12,266 operational taxonomic units (OTUs), of which 97.5% could be annotated. In sick soils, Athelia, Mucor and Mortierella were the dominant fungi, comprising 10.3%, 10.1% and 7.7% of the fungal community, respectively. These fungi showed 2.6-, 1.53- to 6.31- and 1.38- to 2.65-fold higher enrichment in sick soils compared with healthy soils, and their high densities reduced the fungal richness in the areas surrounding the rotted Fuzi roots. An abundance analysis suggested that A. rolfsii and Mucor racemosus, as the dominant pathogens, might play important roles in the invading Fuzi tissue, and Phoma adonidicola could be another pathogenic fungus of root rot. In contrast, Mortierella chlamydospora, Penicillium simplicissimum, Epicoccum nigrum, Cyberlindnera saturnus and Rhodotorula ingeniosa might antagonize root rot pathogens in sick soils. In addition, A. rolfsii was further verified as a main pathogen of Fuzi root rot disease through hypha purification, morphological observation, molecular identification and an infection test. These results provide theoretical guidance for the prevention and treatment of Fuzi root rot disease.


Assuntos
Aconitum/microbiologia , DNA Fúngico/genética , DNA Intergênico/genética , Fungos/genética , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biodiversidade , Etiquetas de Sequências Expressas , Fungos/classificação , Fungos/isolamento & purificação , Fungos/patogenicidade , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mortierella/classificação , Mortierella/genética , Mortierella/isolamento & purificação , Mortierella/patogenicidade , Penicillium/classificação , Penicillium/genética , Penicillium/isolamento & purificação , Penicillium/patogenicidade , Filogenia , Doenças das Plantas/microbiologia , Rizosfera , Rhodotorula/classificação , Rhodotorula/genética , Rhodotorula/isolamento & purificação , Rhodotorula/patogenicidade , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Saccharomycetales/patogenicidade , Solo/química
11.
Medicine (Baltimore) ; 96(40): e8059, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28984761

RESUMO

BACKGROUND: After arthroplasty treatment, some complications commonly occur, such as early revision, infection/dislocation, and venous thromboembolism (VTE). This study aims to use a network meta-analysis to compare effects of 9 anticoagulant drugs (edoxaban, dabigatan, apixaban, rivaroxaban, warfarin, heparin, bemiparin, ximelagatran, and enoxaparin) in preventing postoperative complications in arthroplasty patients. METHODS: After retrieving PubMed, Embase, and Cochrane Library database from the inception to November 2016, randomized controlled trials were enrolled. The integration of direct and indirect evidences was performed to calculate odd ratios and the surface under the cumulative ranking curves. Nineteen eligible randomized controlled trials were included. RESULTS: The network meta-analysis results showed that compared with warfarin, edoxaban, apixaban, and rivaroxaban had a lower incidence rate in asymptomatic deep venous thrombosis, which indicated that edoxaban, apixaban, and rivaroxaban had better effects on prevention. Similarly, in comparison to enoxaparin, edoxaban and rivaroxaban had better effect; rivaroxaban was better than ximelagatran in preventive effects. Compared with apixaban, edoxaban, dabigatan, rivaroxaban, and enoxaparin had a higher incidence rate in clinically relevant non-major bleeding, which showed that preventive effects were relatively poor. In addition, the results of the surface under the cumulative ranking curves showed that rivaroxaban and bemiparin worked best on symptomatic deep venous thrombosis and pulmonary embolism. In terms of bleeding, apixaban and warfarin had better preventive effects. CONCLUSION: Our findings suggested that rivaroxaban may work better in terms of symptomatic deep venous thrombosis and pulmonary embolism, whereas apixaban had better preventive effects in bleeding.


Assuntos
Anticoagulantes/uso terapêutico , Artroplastia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Embolia Pulmonar/prevenção & controle , Tromboembolia Venosa/prevenção & controle , Azetidinas/uso terapêutico , Benzilaminas/uso terapêutico , Dabigatrana/uso terapêutico , Enoxaparina/uso terapêutico , Heparina/uso terapêutico , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos , Metanálise em Rede , Complicações Pós-Operatórias/etiologia , Embolia Pulmonar/etiologia , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Piridonas/uso terapêutico , Rivaroxabana/uso terapêutico , Tiazóis/uso terapêutico , Resultado do Tratamento , Tromboembolia Venosa/etiologia , Varfarina/uso terapêutico
12.
Zhongguo Zhong Yao Za Zhi ; 41(19): 3602-3608, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-28925155

RESUMO

An MSAP analysis method was established for detecting DNA methylation of Aconitum carmichaeli leaves, and the DNA methylation of different leaf shapes and different leaf position was analyzed by MSAP. The study made experiments on the leaves of different position of mosaic and moxa leaf type A. carmichaeli, researched the effects of restriction digestion of genomic DNA by using two restriction enzymes, screened the suitable selective amplification primers, and analyzed the methylation differences of leaves by calculating the 6% acrylamide gel electrophoresis bands and lane. The best reaction system of MSAP was obtained, under the conditions of 37 ℃, the 16 h incubated time was more suitable for 150 ng DNA, and 25 pairs of selective amplification primers were selected from 256 pairs. Totally, 273 electrophoresis bands were obtained by 25 pairs of selective primers, including 228 non methylation or single chain methylation bands,27 double chain methylation bands,and 18 single stranded methylation bands, the total methylation rate was 16.48%. The methylation rate was slightly different in mosaic and moxa leaf type A. carmichaeli leaf, which were 15.36%, 14.34%, respectively, and article 8, article 6 nucleotide fragments of genome methylation modification differences were obtained, accounted for 3%, 2.26% of the total number of bands. Based on this study it can provide new ideas for molecular identification, breeding and cultivation, and genetic evolution of A. carmichaeli.


Assuntos
Aconitum/genética , Metilação de DNA , DNA de Plantas/genética , Primers do DNA
13.
Mitochondrial DNA B Resour ; 1(1): 893-894, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33473669

RESUMO

The complete chloroplast genome sequence of an important medicinal plant of the family Ranunculaceae, Aconitum carmichaelii Debx., was characterized in this study. The assembled chloroplast genome was 154,776 bp in length, which included a large single-copy (LSC), a small single-copy (SSC), and two inverted repeat (IR) regions of 86,330bp, 15,986 bp, and 26,193 bp, respectively. The GC content of the genome was 38.1%. Phylogenetic analysis with the whole nucleotide sequences of reported Aconitum chloroplast genomes indicated a close relationship of A. carmichaelii with A. kusnezoffii.

14.
Biochemistry (Mosc) ; 78(11): 1298-303, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24460945

RESUMO

A putative fatty acyl-acyl carrier protein (acyl-ACP) thioesterase (thioesterase) full-length cDNA sequence named as ClFATB1 was obtained from the seed cDNA library of Cinnamomum longepaniculatum by the SMART-RACE method. The novel gene encodes a protein of 382 amino acid residues with close homology to fatty acid thioesterase type B (FATB) enzymes of other plants, with two essential residues (His285 and Cys320) for thioesterase catalytic activity. The gene was transcribed in all tissues of C. longepaniculatum, the highest being in seeds. Recombinant ClFATB1 in Escherichia coli had higher specific activities against saturated 16:0- and 18:0-ACPs than on unsaturated 18:1-ACP. Overexpression of ClFATB1 in transgenic tobaccos upregulated thioesterase activities of crude proteins against 16:0-ACP and 18:0-ACP by 20.3 and 5.7%, respectively, and resulted in an increase in the contents of palmitic and stearic acids by 15.4 and 10.5%, respectively. However, ectopic expression of this gene decreased the substrate specificities of crude proteins to unsaturated 18:1-ACP by 12.7% in transgenic tobacco and lowered the contents of oleic, linoleic, and linolenic acids in transgenic leaves. So ClFATB1 would potentially upregulate the synthesis of saturated fatty acids and downregulate unsaturated ones in the fatty acid synthesis pathway of plants.


Assuntos
Cinnamomum/genética , Proteínas de Plantas/genética , Tioléster Hidrolases/genética , Proteína de Transporte de Acila/metabolismo , Sequência de Aminoácidos , Cinnamomum/classificação , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tioléster Hidrolases/metabolismo , Nicotiana/metabolismo
15.
Mol Biol Rep ; 37(2): 939-46, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19763881

RESUMO

Phospholipase D (PLD, EC 3.1.4.4) is a key enzyme involved in phospholipid catabolism, initiating a lipolytic cascade in membrane deterioration during senescence and stress, which was cloned from Jatropha curcas L., an important plant species as its seed is the raw material for biodiesels. The cDNA was 2,886 bp in length with a complete open reading frame of 2,427 bp which encoded a polypeptide of 808 amino acids including a putative signal peptide of 53 amino acid residues and a mature protein of 755 amino acids with a predicted molecular mass of 86 kD and a pI of 5.44, having two highly conserved HKD' motifs. Phylogenetic analysis indicated the J. curcas PLD alpha (JcPLDalpha) showed a high similarity to other PLD alpha from plants. Semi-quantitative RT-PCR analysis revealed that it was especially abundant in root, stem, leaf, endosperm and flower, weakly in seed. And the JcPLDalpha was increasedly expressed in leaf undergoing environmental stress such as salt (300 mM NaCl), drought (30% PEG), cold (4degreeC) and heat (50degreeC). The JcPLDalpha protein was successfully expressed in Escherichia coli and showed high enzymatic activities. Maximal activity was at pH 8 and 60degreeC.


Assuntos
Jatropha/genética , Fosfolipase D/genética , Clonagem Molecular , DNA Complementar/análise , DNA Complementar/isolamento & purificação , Genes de Plantas , Concentração de Íons de Hidrogênio , Jatropha/enzimologia , Jatropha/metabolismo , Fosfolipase D/análise , Fosfolipase D/isolamento & purificação , Fosfolipase D/metabolismo , Filogenia , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA