Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 36(9): 3584-3600, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35960140

RESUMO

Bone defects are difficult to heal, which conveys a heavy burden to patients' lives and their economy. The total flavonoids of Rhizoma drynariae (TFRD) can promote the osteogenesis of distraction osteogenesis. However, the dose effect is not clear, the treatment period is short, and the quality of bone formation is poor. In our study, we observed the long-term effects and dose effects of TFRD on bone defects, verified the main ingredients of TFRD in combination with network pharmacology for the first time, explored its potential mechanism, and verified these findings. We found that TFRD management for 12 weeks regulated osteogenesis and angiogenesis in rats with 4-mm tibial bone defects through the PI3K/AKT/HIF-1α/VEGF signaling pathway, especially at high doses (135 mg kg-1  d-1 ). The vascularization effect of TFRD in promoting human umbilical vein endothelial cells was inhibited by PI3K inhibitors. These results provide a reference for the clinical application of TFRD.


Assuntos
Osteogênese , Polypodiaceae , Animais , Células Endoteliais , Flavonoides/farmacologia , Humanos , Neovascularização Patológica , Fosfatidilinositol 3-Quinases , Ratos
2.
Phytother Res ; 35(5): 2651-2664, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33452734

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In China, Yinqiao powder is widely used to prevent and treat COVID-19 patients with Weifen syndrome. In this study, the screening and verification of active ingredients, target selection and DisGeNET scoring, drug-ingredient-gene network construction, protein-protein interaction network construction, molecular docking and surface plasmon resonance (SPR) analysis, gene ontology (GO) functional analysis, gene tissue analysis, and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were used to explore the active ingredients, targets, and potential mechanisms of Yinqiao powder in the treatment of COVID-19. We also predicted the therapeutic effect of Yinqiao powder using TCM anti-COVID-19 (TCMATCOV). Yinqiao powder has a certain therapeutic effect on COVID-19, with an intervention score of 20.16. Hesperetin, eriodictyol, luteolin, quercetin, and naringenin were the potentially effective active ingredients against COVID-19. The hub-proteins were interleukin-6 (IL-6), mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and tumor protein P53 (TP53). The potential mechanisms of Yinqiao powder in the treatment of COVID-19 are the TNF signaling pathway, T-cell receptor signaling pathway, Toll-like receptor signaling pathway, and MAPK signaling pathway. This study provides a new perspective for discovering potential drugs and mechanisms of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Pós , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA