Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 124(Pt A): 110832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634449

RESUMO

Glutamine has anti-inflammatory properties as well as the ability to maintain the integrity of the intestinal barrier. In our previous study, we found that 1.0% glutamine promoted SIgA (secretory immunoglobulin A) synthesis in the gut via both T cell-dependent and non-dependent processes, as well as via the intestinal microbiota. The purpose of this study was to investigate whether the intestinal microbiota or microbial metabolites regulate SIgA synthesis. In the mouse model, supplementation with 1.0% glutamine had no significant effect on the intestinal microbiota, but KEGG function prediction showed the difference on microbiota metabolites. Therefore, in this study, untargeted metabolomics techniques were used to detect and analyze the metabolic changes of glutamine in intestinal luminal contents. Metabolomics showed that in the positive ion (POS) mode, a total of 1446 metabolic differentials (VIP ≥ 1, P < 0.05, FC ≥ 2 or FC ≤ 0.5) were annotated in samples treated with glutamine-supplemented group compared to control group, of which 922 were up-regulated and 524 down-regulated. In the negative ion (NEG) mode, 370 differential metabolites (VIP ≥ 1, P < 0.05, FC ≥ 2 or FC ≤ 0.5) were screened, of which 220 were up-regulated and 150 down-regulated. These differential metabolites mainly include bile secretion synthesis, ABC transporters, diterpenoids and other secondary metabolites. KEGG analysis showed that propionic acid metabolism, TCA cycle, endoplasmic reticulum protein processing, nitrogen metabolism and other metabolic pathways were active. The above metabolic pathways and differential metabolites have positive effects on intestinal development and intestinal immunity, and combined with our previous studies, we conclude that glutamine supplementation can may maintain intestinal homeostasis and improving intestinal immunity through intestinal microbial metabolites.

2.
Front Microbiol ; 14: 1181519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180229

RESUMO

This experiment was conducted to evaluate effects of zine oxide (ZnO) and condensed tannins (CT), independently or in combination, on the growth performance and intestinal health of weaned piglets in enterotoxigenic Escherichia coli (ETEC-K88)-challenged environment. Randomly divided 72 weaned piglets into 4 groups. Dietary treatments included the following: basic diet group (CON), 1,500 mg/kg zinc oxide group (ZnO), 1,000 mg/kg condensed tannins group (CT), and 1,500 mg/kg zinc oxide +1,000 mg/kg condensed tannins group (ZnO + CT). Dietary ZnO supplementation decreased diarrhea rate from 0 to 14 days, 15 to 28 days, and 0 to 28 days (p < 0.05) and no significant on growth performance. The effect of CT on reducing diarrhea rate and diarrhea index was similar to the results of ZnO. Compared with the CON group, ZnO increased the ileum villus height and improved intestinal barrier function by increasing the content of mucin 2 (MUC-2) in jejunum and ileum mucosa and the mRNA expression of zonula occludens-1 (ZO-1) in jejunum (p < 0.05) and the expression of Occludin in duodenum and ileum (p < 0.05). The effects of CT on intestinal barrier function genes were similar to that of ZnO. Moreover, the mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR) in jejunum and ileum was reduced in ZnO group (p < 0.05). And CT was also capable of alleviating diarrhea by decreasing CFTR expression and promote water reabsorption by increasing AQP3 expression (p < 0.05). In addition, pigs receiving ZnO diet had higher abundance of phylum Bacteroidetes, and genera Prevotella, and lower phylum Firmicutes and genera Lactobacillus in colonic contents. These results indicated that ZnO and CT can alleviate diarrhea and improve intestinal barrier function of weaned pigs in ETEC-challenged environment. In addition, the application of ZnO combined with CT did not show synergistic effects on piglet intestinal health and overall performance. This study provides a theoretical basis for the application of ZnO in weaning piglet production practices, we also explored effects of CT on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment.

3.
Food Sci Nutr ; 11(4): 1736-1746, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051345

RESUMO

The high incidence of oxidative stress in sows during late gestation and lactation affects mammary gland health, milk yield, and milk quality. Recently, we found that supplementing maternal diets with 1% taurine improved antioxidant capability and enhanced growth performance in offspring; however, the mechanisms underlying these are unknown. This study aimed to investigate the cytoprotective effects and the mechanism of taurine in mitigating oxidative stress in porcine mammary epithelial cells (PMECs). PMECs were pretreated with 0-2.0 mM taurine for 12 h and then subjected to oxidative injury with 500 µM hydrogen peroxide (H2O2). Pretreatment with taurine attenuated decreased cell viability, enhanced superoxide dismutase, and reduced the intracellular reactive oxygen species accumulation after H2O2 exposure. Taurine also prevented H2O2-induced endoplasmic reticulum stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) was essential to the cytoprotective effects of taurine on PMECs, as Nrf2 knockdown significantly inhibited taurine-induced cytoprotection against oxidative stress. Moreover, we confirmed that Nrf2 induction by taurine was mediated through the inactivation of the p38/MAPK pathway. Overall, taurine supplementation has beneficial effects on redox balance regulation and may protect against oxidative stress in lactating animals.

4.
Anim Biotechnol ; 34(4): 921-934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34871537

RESUMO

This study investigated potential mechanism of dibutyryl-cAMP (db-cAMP) on porcine fat deposition. (1) Exp.1, 72 finishing pigs were allotted to 3 treatments (0, 10 or 20 mg/kg dbcAMP) with 6 replicates. dbcAMP increased the hormone sensitive lipase (HSL) activity and expression of ß-adrenergic receptor (ß-AR) and growth hormone receptor (GHR), but decreased expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2) and adipocyte fatty acid binding protein (A-FABP) in back fat. dbcAMP upregulated expression of ß-AR, GHR, PPAR-γ2 and A-FABP, but decreased insulin receptor (INSR) expression in abdominal fat. Dietary dbcAMP increased HSL activity and expression of G protein-coupled receptor (GPCR), cAMP-response element-binding protein (CREB) and insulin-like growth factor-1 (IGF-1), but decreased fatty acid synthase (FAS) and lipoprotein lipase (LPL) activities, and expression of INSR, cAMP-response element-binding protein (C/EBP-α) and A-FABP in perirenal fat. (2) Exp. 2, dbcAMP suppressed the proliferation and differentiation of porcine preadipocytes in a time- and dose-dependent manner, which might be associated with increased activities of cAMP and protein kinase A (PKA), and expression of GPCR, ß-AR, GHR and CREB via inhibiting C/EBP-α and PPAR-γ2 expression. Collectively, dbcAMP treatment may reduce fat deposition by regulating gene expression related to adipocyte differentiation and fat metabolism partially via cAMP-PKA pathway.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Receptores Ativados por Proliferador de Peroxissomo , Animais , Suínos , Bucladesina/farmacologia , Bucladesina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Tecido Adiposo/metabolismo , Suplementos Nutricionais
5.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955466

RESUMO

(1) Background: Changes in the expression of aquaporins (AQPs) in the intestine are proved to be associated with the attenuation of diarrhea. Diarrhea is a severe problem for postweaning piglets. Therefore, this study aimed to investigate whether niacin could alleviate diarrhea in weaned piglets by regulating AQPs expression and the underlying mechanisms; (2) Methods: 72 weaned piglets (Duroc × (Landrace × Yorkshire), 21 d old, 6.60 ± 0.05 kg) were randomly allotted into 3 groups for a 14-day feeding trial. Each treatment group included 6 replicate pens and each pen included 4 barrows (n = 24/treatment). Piglets were fed a basal diet (CON), a basal diet supplemented with 20.4 mg niacin/kg diet (NA) or the basal diet administered an antagonist for the GPR109A receptor (MPN). Additionally, an established porcine intestinal epithelial cell line (IPEC-J2) was used to investigate the protective effects and underlying mechanism of niacin on AQPs expression after Escherichia coli K88 (ETEC K88) treatment; (3) Results: Piglets fed niacin-supplemented diet had significantly decreased diarrhea rate, and increased mRNA and protein level of ZO-1, AQP 1 and AQP 3 in the colon compared with those administered a fed diet supplemented with an antagonist (p < 0.05). In addition, ETEC K88 treatment significantly reduced the cell viability, cell migration, and mRNA and protein expression of AQP1, AQP3, AQP7, AQP9, AQP11, and GPR109A in IPEC-J2 cells (p < 0.05). However, supplementation with niacin significantly prevented the ETEC K88-induced decline in the cell viability, cell migration, and the expression level of AQPs mRNA and protein in IPEC-J2 cells (p < 0.05). Furthermore, siRNA GPR109A knockdown significantly abrogated the protective effect of niacin on ETEC K88-induced cell damage (p < 0.05); (4) Conclusions: Niacin supplementation increased AQPs and ZO-1 expression to reduce diarrhea and intestinal damage through GPR109A pathway in weaned piglets.


Assuntos
Aquaporinas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Niacina , Animais , Aquaporinas/genética , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções por Escherichia coli/prevenção & controle , Intestinos , Niacina/farmacologia , RNA Mensageiro , Suínos , Regulação para Cima
6.
Int Immunopharmacol ; 105: 108520, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35063748

RESUMO

This study was to investigate the developmental changes in intestinal morphology and immune profiles in suckling and weaning piglets. Seventy-two weaning piglets with equal initial body weight from 8 litters (Duroc × Landrace × Yorkshire, 9 piglets per litter) were selected. Thirty-two piglets in the suckling group were nursed by sows until they were 17, 21, 28, or 35 days of age. While the other forty piglets were weaned at 14 d of age, and then housed in the same farrowing cage without a sow and slaughtered until they were on d 0, 3, 7, 14 and 21 after weaning at d 14 of age (wd 0, 3, 7, 14, 21). Blood, jejunal mucosa, intraepithelial lymphocyte (IEL) and lamina propria T lymphocyte (LPL) were harvested from suckling piglets at d 14, 17, 21, 28 and 35 of age and weaning piglets on d 0, 3, 7, 14 and wd 0, wd 3, wd 7, wd 14 and wd 21). The results showed that compared with the wd 0, early weaning significantly declined the average daily gain of postweaning 0-7 (wd 0-7) (P < 0.05), and jejunal villus height on wd 3 (P < 0.05), as well as increased the jejunal crypt depth of piglets on wd 7, 14 and 21 (P < 0.05). And there were no significant differences in average daily gain and villus height after suckling (P > 0.05). The level of serum interferon-γ (IFN-γ) was increased on wd 7 and decreased on wd 21 (P < 0.05), while IFN-γ level in jejunal mucosa was enhanced at wd 3 in comparison with wd 0 (P < 0.05). And the serum interleukin-4 (IL-4) levels were increased at wd 14, wd 21, but the mucosa IL-4 concentration was strikingly increased on wd 7 (P < 0.05). Moreover, weaning led to the enhanced levels of interleukin-1b (IL-1b), interleukin-2 (IL-2) and soluble interleukin-2 receptor (sIL-2R) in serum (P < 0.05), as well as declined the levels of sIL-2R in jejunal mucosa at wd 3 (P < 0.05). In suckling piglets, the serum immunoglobulin A (IgA), IL-4 and IL-2 levels were increased with increasing age (P < 0.05), whereas the jejunal mucosa IL-1b and serum sIL-2R levels were lower (P < 0.05). Furthermore, significantly lower CD4 percentage in peripheral blood T lymphocyte subsets were found at wd 3 and wd 7 (P < 0.05), whereas the CD8 percentage in peripheral blood T lymphocyte subsets were enhanced on wd 3 and wd 7 than wd 0 (P < 0.05). Moreover, the weaning piglets at wd 3 had a lower CD4/CD8 ratio than wd 0 (P < 0.05). Additionally, we found that weaning decreased IgG, IL-4, IL-2 and IL-1b levels of IEL during 1-week post-weaning (P < 0.05). Similarly, the levels of IgA, IgG, IL-2 and sIL-2R in LPL medium were also declined from piglets postweaning 1 week (P < 0.05). Early weaning reduced the growth performance, damaged jejunal morphology, disrupted IFN-γ/IL-4, IL-2/sIL-2R and T lymphocyte balance, and impaired the IEL and LPL immune profiles of piglets.


Assuntos
Mucosa Intestinal , Jejuno , Animais , Peso Corporal , Suplementos Nutricionais , Feminino , Suínos , Desmame
7.
Animals (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34438645

RESUMO

This study aimed to investigate the effects of niacin on growth performance, intestinal morphology, intestinal mucosal immunity, and colonic microbiota in weaned piglets. A total of 96 weaned piglets (Duroc × (Landrace × Yorkshire), 21-d old, 6.65 ± 0.02 kg body weight (BW)) were randomly allocated into 3 treatment groups (8 replicate pens per treatment, each pen containing 4 males; n = 32/treatment) for 14 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 20.4 mg/kg niacin (NA) or an antagonist for the niacin receptor GPR109A (MPN). The results showed that NA or MPN had no effect on ADG, ADFI, G/F or diarrhea incidence compared with the CON diet. However, compared with piglets in the NA group, piglets in the MPN group had lower ADG (p = 0.042) and G/F (p = 0.055). In comparison with the control and MPN group, niacin supplementation increased the villus height and the ratio of villus height to crypt depth (p < 0.05), while decreasing the crypt depth in the duodenum (p < 0.05). Proteomics analysis of cytokines showed that niacin supplementation increased the expression of duodenal transforming growth factor-ß (TGF-ß), jejunal interleukin-10 (IL-10) and ileal interleukin-6 (IL-6) (p < 0.05), and reduced the expression of ileal interleukin-8 (IL-8) (p < 0.05) compared with the control diet. Piglets in the MPN group had significantly increased expression of ileal IL-6, and jejunal IL-8 and interleukin-1ß (IL-1ß) (p < 0.05) compared with those in the control group. Piglets in the MPN group had lower jejunal IL-10 level and higher jejunal IL-8 level than those in the NA group (p < 0.05). The mRNA abundance of duodenal IL-8 and ileal granulocyte-macrophage colony-stimulating factor (GM-CSF) genes were increased (p < 0.05), and that of ileal IL-10 transcript was decreased (p < 0.05) in the MPN group compared with both the control and NA groups. Additionally, niacin increased the relative abundance of Dorea in the colon as compared with the control and MPN group (p < 0.05), while decreasing that of Peptococcus compared with the control group (p < 0.05) and increasing that of Lactobacillus compared with MPN supplementation (p < 0.05). Collectively, the results indicated that niacin supplementation efficiently ensured intestinal morphology and attenuated intestinal inflammation of weaned piglets. The protective effects of niacin on gut health may be associated with increased Lactobacillus and Dorea abundance and butyrate content and decreased abundances of Peptococcus.

8.
J Anim Sci ; 99(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33928383

RESUMO

This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg-1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg-1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1ß, IL-8, and tumor necrosis factor-α), porcine ß-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Lactobacillus plantarum , Animais , Dieta/veterinária , Suplementos Nutricionais , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunidade Inata , Mucosa Intestinal , Proteínas Quinases Ativadas por Mitógeno , Suínos , Receptor 4 Toll-Like/genética
9.
J Nutr ; 151(1): 20-29, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245135

RESUMO

BACKGROUND: Whether dietary choline and bile acids affect lipid use via gut microbiota is unclear. OBJECTIVES: This study aimed to investigate the effect of choline and bile acids on growth performance, lipid use, intestinal immunology, gut microbiota, and bacterial metabolites in weaned piglets. METHODS: A total of 128 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 8.21 ± 0.20 kg body weight (BW)] were randomly allocated to 4 treatments (8 replicate pens per treatment, each pen containing 2 males and 2 females; n = 32 per treatment) for 28 d. Piglets were fed a control diet (CON) or the CON diet supplemented with 597 mg choline/kg (C), 500 mg bile acids/kg (BA) or both (C + BA) in a 2 × 2 factorial design. Growth performance, intestinal function, gut microbiota, and metabolites were determined. RESULTS: Compared with diets without choline, choline supplementation increased BW gain (6.13%), average daily gain (9.45%), gain per feed (8.18%), jejunal lipase activity (60.2%), and duodenal IL10 gene expression (51%), and decreased the mRNA abundance of duodenal TNFA (TNFα) (40.7%) and jejunal toll-like receptor 4 (32.9%) (P < 0.05); additionally, choline increased colonic butyrate (29.1%) and the abundance of Lactobacillus (42.3%), while decreasing the bile acid profile (55.8% to 57.6%) and the abundance of Parabacteroides (75.8%), Bacteroides (80.7%), and unidentified-Ruminococcaceae (32.5%) (P ≤ 0.05). Compared with diets without BA, BA supplementation decreased the mRNA abundance of colonic TNFA (37.4%), NF-κB p65 (42.4%), and myeloid differentiation factor 88 (42.5%) (P ≤ 0.01); BA also increased colonic butyrate (20.9%) and the abundance of Lactobacillus (39.7%) and Faecalibacterium (71.6%) and decreased that of Parabacteroides (67.7%) (P < 0.05). CONCLUSIONS: Choline supplementation improved growth performance and prevented gut inflammation in weaned piglets by altering gut microbiota and lipid metabolism. BA supplementation suppressed intestinal inflammation with no effect on growth performance, which was associated with changed gut microbiota and metabolites.


Assuntos
Colina/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/veterinária , Enteropatias/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Suínos/crescimento & desenvolvimento , Animais , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/farmacologia , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Enteropatias/prevenção & controle , Masculino , Receptores Citoplasmáticos e Nucleares/metabolismo , Doenças dos Suínos/prevenção & controle , Transcriptoma
10.
J Anim Sci ; 98(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32803249

RESUMO

The present study investigated the effect of optimizing the total dietary arginine (Arg)-to-lysine (Lys) ratios on the metabolism of lactating sows and piglet performance by supplementation with l- Arg during lactation. A total of 200 multiparous sows (three to six parities, Yorkshire × Landrace) were selected and randomly and equally assigned to five groups in lactation, and finally, 36, 34, 35, 36, and 33 dams completed the study in the dietary treatments, respectively, where the diets consisted of five step-up Arg-to-Lys ratios (0.9, 1.0, 1.1, 1.2, and 1.3) by the addition of 0%, 0.10%, 0.20%, 0.30%, and 0.40% Arg. The diets contained 3.37 to 3.38 Mcal of digestible energy/kg energy, 17.73% to 17.75% crude protein, and 0.98% to 1.01% Lys and were fed ad libitum during lactation. The performance of sows and suckling piglets was measured, and plasma and milk samples were collected for analysis. The feed intake of sows as well as litter weight gain during lactation increased linearly (P ≤ 0.05), while maternal backfat and milk composition were not affected (P > 0.05) as the dietary Arg-to-Lys ratios increased. Analyzed plasma biochemical indices, including concentrations of free Arg, Orn, and Glu, and prolactin, insulin, and follicle-stimulating hormone, responded linearly (P ≤ 0.05) to increases in dietary Arg-to-Lys ratios. The dietary Arg-to-Lys ratios of 1.01 and 1.02 were optimal for maternal feed intake and litter weight gain, based on broken-line models. Collectively, the results of this study indicate that increasing total dietary Arg-to-Lys ratios in lactation was beneficial for the performance of lactating sows and suckling piglets, and dietary Arg-to-Lys ratios of 1.01 and 1.02 were optimal, from regression analyses, for the practical feeding of lactating sows.


Assuntos
Ração Animal , Arginina , Lactação , Suínos , Ração Animal/análise , Animais , Arginina/farmacologia , Dieta/veterinária , Dipeptídeos , Feminino , Lactação/efeitos dos fármacos , Lisina/metabolismo , Leite/química , Doenças dos Suínos/metabolismo , Aumento de Peso/efeitos dos fármacos
11.
Amino Acids ; 51(10-12): 1547-1559, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31720834

RESUMO

Mammary gland development during late pregnancy in sows is a major factor affecting the composition of colostrum and milk and the pre-weaning growth of piglets, while valine is essential for protein and nitrogen metabolism in mammary gland of sow. However, the effects of valine and its underlying mechanism on mammary gland development during late pregnancy are still unclear. Here, we hypothesized that dosage of dietary valine during late pregnancy will affect protein synthesis of colostrum in gilts. The results showed that supplementation of valine during late pregnancy significantly increased content of protein (P < 0.01), fat (P = 0.02) and solids-non-fat (P = 0.04) in colostrum. Our in vitro study also confirmed that valine supplementation increased protein synthesis and cell proliferation in porcine mammary epithelial cells (PMEC). Furthermore, these changes were associated with elevated phosphorylation levels of mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (S6) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) in valine-supplemented cells, which could be effectively blocked by the antagonists of mTOR. These findings indicated that valine enhanced mammary gland development and protein synthesis in colostrum via the mTOR signaling pathway. These results, using an in vivo and in vitro model, helped to understand the beneficial effects of dietary valine supplementation on gilts.


Assuntos
Colostro/química , Suplementos Nutricionais , Glândulas Mamárias Animais/metabolismo , Biossíntese de Proteínas , Sus scrofa/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Valina/administração & dosagem , Ração Animal/análise , Animais , Linhagem Celular , Proliferação de Células , Dieta/veterinária , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Fosforilação , Gravidez , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Valina/metabolismo
12.
Animals (Basel) ; 9(5)2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31064160

RESUMO

Birth is one of the most important events of animal production agriculture, as newborns are abruptly forced to adapt to environmental and nutritional disruptions that can lead to oxidative damage and delay in growth. Taurine (Tau) is an important regulator of oxidative stress and possesses growth-enhancing properties. In the present study, we investigated the effects of dietary Tau supplementation in gilts during late gestation and lactation on the growth performance of piglets by assessing intestinal morphology and barrier function, and oxidative stress status. Sixteen gilts were randomly allocated to the Con (basal diet) and Tau (basal diet with 1% Tau) groups from 75 d of gestation to weaning. Maternal dietary Tau supplementation significantly increased weaning weight and average daily gain weight in piglets. Piglets in the Tau group had higher villus height and villus height-to-crypt depth ratio (VCR), ZO-1 protein expression, and secretory immunoglobulin A (sIgA) content in the jejunum. Meanwhile, Tau bebeficial affected the milk quality of gilts, as indicated by decreased malondialdehyde (MDA) concentration and increased total superoxide dismutase (T-SOD), total antioxidative capability (T-AOC), glutathione peroxidase (GPx), and catalase (CAT) activity. Furthermore, Tau supplementation increased T-SOD activity in plasma and SOD2 protein expression in the jejunum in the piglets. In conclusion, this study provides evidence that dietary Tau supplementation to gilts improves growth performance in piglets, owing to improved intestinal morphology and barrier function, as well as inhibition of oxidative stress.

13.
Biol Reprod ; 101(1): 126-137, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985894

RESUMO

Lactating mammary glands are among the most active lipogenic organs and provide a large percentage of bioactive lipids and calories for infant growth. The branched-chain amino acid (BCAA) valine is known to modulate fatty acids synthesis in adipose tissue; however, its effects on fat metabolism and the underlying mechanisms in mammary glands remain to be determined. Valine supplementation during late pregnancy significantly increased the contents of total milk fat, triglyceride, sphingomyelin, and polyunsaturated fatty acids in the colostrum of gilts. Further study in porcine mammary epithelial cells (PMECs) confirmed that valine upregulated the phosphorylation levels of AKT-activated MTOR and subsequently induced the nuclear accumulation of sterol regulatory element binding protein 1 (SREBP1), thus increasing the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Inhibition of AKT/MTOR signaling or silencing of SREBP1 in PMECs downregulates the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Our findings indicated that valine enhanced milk fat synthesis of colostrum in porcine mammary glands via the AKT/MTOR/SREBP1 signaling pathway.


Assuntos
Ácidos Graxos/metabolismo , Lactação/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Leite/efeitos dos fármacos , Suínos , Valina/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Células Cultivadas , Suplementos Nutricionais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Lactação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Leite/química , Leite/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Valina/administração & dosagem
14.
J Anim Sci ; 96(6): 2342-2351, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659876

RESUMO

The objective of this study was to investigate the effects of Lactobacillus reuteri LR1, a new strain isolated from the feces of weaned pigs, on the growth performance, intestinal morphology, immune responses, and intestinal barrier function in weaned pigs. A total of 144 weaned pigs (Duroc × Landrace × Yorkshire, 21 d of age) with an initial BW of 6.49 ± 0.02 kg were randomly assigned to 3 dietary treatments with 8 replicate pens, each of per treatment and 6 pigs. Pigs were fed a basal diet (CON, controls), the basal diet supplemented with 100 mg/kg olaquindox and 75 mg/kg aureomycin (OA) or the basal diet supplemented with 5 × 1010 cfu/kg L. reuteri LR1 for a 14-d period. At the end of study, the ADG, ADFI, and G:F were calculated, and 1 randomly selected pig from each pen was euthanized for sample collection. The LR1 increased ADG (22.73%, P < 0.05) compared with CON. The villus height of the ileum was increased (P < 0.05) and crypt depth in duodenum was reduced (P < 0.05), along with increased (P < 0.05) villus height to crypt depth ratio of the jejunum and ileum by LR1 compared with CON and OA. LR1 increased (P < 0.05) ileal mucosal content of IL-22 and transforming growth factor-ß compared with OA. Compared with CON, LR1 increased (P < 0.05) and OA decreased (P < 0.05) the ileal content of secretory immunoglobulin A (sIgA), and the abundance of transcripts of porcine ß-defensin 2 and protegrin 1-5. Compared with CON, LR1 increased (P < 0.05) tight junction protein zonula occludens-1 and occludin transcripts in the mucosa of the jejunum and ileum, and those of mucin-2 in ileal mucosa. The relative expression of toll-like receptor 2 (TLR2) and TLR4 were increased (P < 0.05) in ileal mucosa in pigs fed LR1 compared with CON. In conclusion, these data indicated that dietary LR1 supplementation at 5 × 1010 cfu/kg improved growth performance, intestinal morphology, and intestinal barrier function in weaned pigs.


Assuntos
Limosilactobacillus reuteri/fisiologia , Suínos/crescimento & desenvolvimento , Ração Animal/análise , Animais , Clortetraciclina/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Fezes , Mucosa Intestinal/efeitos dos fármacos , Probióticos
15.
Amino Acids ; 42(6): 2207-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21691753

RESUMO

Suboptimal embryonic/fetal survival and growth remains a significant problem in mammals. Using a swine model, we tested the hypothesis that dietary L-arginine supplementation during gestation may improve pregnancy outcomes through enhancing placental growth and modulating hormonal secretions. Gestating pigs (Yorkshire×Landrace, n=108) were assigned randomly into two groups based on parity and body weight, representing dietary supplementation with 1.0% L-arginine-HCl or 1.7% L-alanine (isonitrogenous control) between days 22 and 114 of gestation. Blood samples were obtained from the ear vein on days 22, 40, 70 and 90 of gestation. On days 40, 70 and 90 of gestation, concentrations of estradiol in plasma were higher (P<0.05) in arginine-supplemented than in control sows. Moreover, arginine supplementation increased (P<0.05) the concentrations of arginine, proline and ornithine in plasma, but concentrations of urea or progesterone in plasma did not differ between the two groups of sows. Compared with the control, arginine supplementation increased (P<0.05) the total number of piglets by 1.31 per litter, the number of live-born piglets by 1.10 per litter, the litter birth weight for all piglets by 1.36 kg, and the litter birth weight for live-born piglets by 1.70 kg. Furthermore, arginine supplementation enhanced (P<0.05) placental weight by 16.2%. The weaning-to-estrus interval of sows was not affected by arginine supplementation during gestation. These results indicate that dietary arginine supplementation beneficially enhances placental growth and the reproductive performance of sows.


Assuntos
Arginina/farmacologia , Placenta/fisiologia , Prenhez/fisiologia , Alanina/farmacologia , Aminoácidos/sangue , Ração Animal , Animais , Peso ao Nascer , Suplementos Nutricionais , Estradiol/sangue , Feminino , Desenvolvimento Fetal , Feto , Aptidão Genética , Tamanho da Ninhada de Vivíparos , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Gravidez , Progesterona/sangue , Suínos , Ureia/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA