Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Plant Cell Environ ; 47(2): 698-713, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882465

RESUMO

Tea is an important cash crop that is often consumed by chewing pests, resulting in reduced yields and economic losses. It is important to establish a method to quickly identify the degree of damage to tea plants caused by leaf-eating insects and screen green control compounds. This study was performed through the combination of deep learning and targeted metabolomics, in vitro feeding experiment, enzymic analysis and transient genetic transformation. A small target damage detection model based on YOLOv5 with Transformer Prediction Head (TPH-YOLOv5) algorithm for the tea canopy level was established. Orthogonal partial least squares (OPLS) was used to analyze the correlation between the degree of damage and the phenolic metabolites. A potential defensive compound, (-)-epicatechin-3-O-caffeoate (EC-CA), was screened. In vitro feeding experiments showed that compared with EC and epicatechin gallate, Ectropis grisescens exhibited more significant antifeeding against EC-CA. In vitro enzymatic experiments showed that the hydroxycinnamoyl transferase (CsHCTs) recombinant protein has substrate promiscuity and can catalyze the synthesis of EC-CA. Transient overexpression of CsHCTs in tea leaves effectively reduced the degree of damage to tea leaves. This study provides important reference values and application prospects for the effective monitoring of pests in tea gardens and screening of green chemical control substances.


Assuntos
Camellia sinensis , Aprendizado Profundo , Lepidópteros , Animais , Camellia sinensis/metabolismo , Insetos , Chá/química , Chá/metabolismo
2.
J Agric Food Chem ; 71(48): 18999-19009, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997954

RESUMO

Camellia sinensis contains numerous glycosylated secondary metabolites that provide various benefits to plants and humans. However, the genes that catalyze the glycosylation of multitype metabolites in tea plants remain unclear. Here, 180 uridine diphosphate-dependent glycosyltransferases that may be involved in the biosynthesis of glycosylated secondary metabolites were identified from the National Center for Biotechnology Information public databases. Subsequently, CsUGT74Y1 was screened through phylogenetic analysis and gene expression profiling. Compositional and induced expression analyses revealed that CsUGT74Y1 was highly expressed in tea tender shoots and was induced under biotic and abiotic stress conditions. In vitro enzymatic assays revealed that rCsUGT74Y1 encoded a multifunctional UGT that catalyzed the glycosylation of flavonoids, phenolic acids, lignins, and auxins. Furthermore, CsUGT74Y1-overexpressing Arabidopsis thaliana exhibited enhanced growth and accumulation of flavonol and auxin glucosides. Our findings provide insights into identifying specific UGTs and demonstrate that CsUGT74Y1 is a multifunctional UGT that promotes plant development.


Assuntos
Camellia sinensis , Glicosiltransferases , Humanos , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Difosfato de Uridina/metabolismo , Filogenia , Plantas/metabolismo , Camellia sinensis/metabolismo , Chá/metabolismo
3.
J Agric Food Chem ; 71(5): 2377-2389, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695193

RESUMO

Salicylic acid (SA) is an important plant hormone and signal required for establishing resistance to diverse pathogens and plant diseases. The abundant polyphenols in tea plants also defend plants from biotic and abiotic stresses. However, whether exogenous SA would increase the resistance of tea plants to adversity and the relationship between SA and polyphenols are still poorly understood. Here, we carried out SA treatment on tea seedlings and performed transcriptome sequencing. SA treatment inhibited the phenylpropanoid and flavonoid metabolic pathways but promoted the lignin metabolic pathways. The increased accumulation of lignin in tea leaves after treating with SA indicated that lignin might coordinate SA, enhance, and improve plant defense and disease resistance. Simultaneously, an SA-inducible flavonoid glucosyltransferase (CsUGT0554) specifically involved in 7-OH site glycosylation was characterized in vitro. These results provided valuable information about the effects of SA on tea seedlings and the molecular basis for SA-mediated immune responses.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Ácido Salicílico/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Flavonoides/metabolismo , Polifenóis/metabolismo , Folhas de Planta/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Sci Food Agric ; 103(5): 2574-2584, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36217244

RESUMO

BACKGROUND: Deep fertilization is effective for improving crop yield and fertilizer use efficiency. However, its impact on mechanized direct-seeded rapeseed and the optimal fertilization depth are poorly understood. A field experiment was conducted to evaluate the fertilization depth effect on mechanized direct-seeded rapeseed growth. Five treatments were designed: surface broadcast fertilizer, no fertilization, and fertilizer banded placement at soil depths of 5 (D5), 10 (D10), and 15 cm (D15). RESULTS: Compared with surface broadcast fertilizer, deep fertilization generally increased seed yield and partial factor productivity by 11.0%, agronomic efficiency (AE) by 22.7%, and recovery efficiency (RE) by 79.2% due to the increase of root mass density (16.8%), plant height (8.6%), height of the first branch (10.6%), stem diameter (22.4%), shoot biomass (16.1%), and shoot nitrogen (35.7%), phosphorus (29.7%), and potassium (26.2%) uptake. D10 had the highest seed yield, oil yield, fertilizer use efficiency, and economic benefits at different fertilization depth treatments. Compared with D5 and D15 respectively, D10 increased seed yield by 5.4% and 46.0%, oil yield by 7.7% and 50.5%, partial factor productivity by 5.4% and 46.0%, AE by 9.0% and 99.5%, RE of nitrogen by 48.9% and 34.9%, RE of phosphorus by 83.1% and 38.0%, and RE of potassium by 57.5% and 32.5%. The economic benefits of D10 were CNY 867.31 ha-1 and CNY 4864.23 ha-1 higher than D5 and D15 respectively. CONCLUSION: Considering rapeseed growth and its economic benefits, this study shows that 10 cm is an appropriate placement depth with regard to mechanized direct-seeded winter rapeseed production. © 2022 Society of Chemical Industry.


Assuntos
Brassica napus , Brassica rapa , Fertilizantes , Agricultura , Solo , Sementes/química , Nitrogênio/análise , Fósforo , Potássio , China
5.
J Agric Food Chem ; 71(1): 488-498, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562642

RESUMO

The high accumulation of galloylated flavan-3-ols in Camellia sp. is a noteworthy phenomenon. We identified a flavan-3-ol galloylation-related functional gene cluster in tannin-rich plant Camellia sp., which included UGT84A22 and SCPL-AT gene clusters. We investigated the possible correlation between the accumulation of metabolites and the expression of SCPL-ATs and UGT84A22. The results revealed that C. sinensis, C. ptilophylla, and C. oleifera accumulated galloylated cis-flavan-3-ols (EGCG), galloylated trans-flavan-3-ols (GCG), and hydrolyzed tannins, respectively; however, C. nitidissima did not accumulate any galloylated compounds. C. nitidissima exhibited no expression of SCPL-AT or UGT84A22, whereas the other three species of Camellia exhibited various expression patterns. This indicated that the functions of the paralogs of SCPL-AT vary. Enzymatic analysis revealed that SCPL5 was neofunctionalized as a noncatalytic chaperone paralog, a type of chaerone-like protein, associating with flavan-3-ol galloylation; moreover, CsSCPL4 was subfunctionalized in association with the galloylation of cis- and trans-flavan-3-ols. In C. nitidissima, an SCPL4 homolog was noted with mutations in two cysteine residues forming a disulfide bond, which suggested that this homolog was defunctionalized. The findings of this study improve our understanding of the functional diversification of SCPL paralogs in Camellia sp.


Assuntos
Camellia sinensis , Camellia , Camellia/genética , Flavonoides/química , Taninos/metabolismo , Camellia sinensis/química
6.
Plant J ; 113(3): 576-594, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534122

RESUMO

Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-ß-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.


Assuntos
Camellia sinensis , Taninos , Taninos/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Chá/genética , Chá/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
7.
J Agric Food Chem ; 70(43): 14096-14108, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36256444

RESUMO

Polyphenol-rich tea plants are aluminum (Al) accumulators. Whether an association exists between polyphenols and Al accumulation in tea plants remains unclear. This study revealed that the accumulation of the total Al and bound Al contents were both higher in tea samples with high flavonol content than in low, and Al accumulation in tea plants was significantly and positively correlated with their flavonol content. Furthermore, the capability of flavonols combined with Al was higher than that of epigallocatechin gallate (EGCG) and root proanthocyanidins (PAs) under identical conditions. Flavonol-Al complexes signals (94 ppm) were detected in the tender roots and old leaves of tea plants through solid-state 27Al nuclear magnetic resonance (NMR) imaging, and the strength of the signals in the high flavonol content tea samples was considerably stronger than that in the low flavonol content tea samples. This study provides a new perspective for studying Al accumulation in different tea varieties.


Assuntos
Alumínio , Camellia sinensis , Alumínio/metabolismo , Camellia sinensis/química , Folhas de Planta/química , Chá/metabolismo , Flavonóis/metabolismo
8.
Plant Mol Biol ; 109(4-5): 579-593, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35553312

RESUMO

KEY MESSAGE: Two 4-coumarate: CoA ligase genes in tea plant involved in phenylpropanoids biosynthesis and response to environmental stresses. Tea plant is rich in flavonoids benefiting human health. Lignin is essential for tea plant growth. Both flavonoids and lignin defend plants from stresses. The biosynthesis of lignin and flavonoids shares a key intermediate, 4-coumaroyl-CoA, which is formed from 4-coumaric acid catalyzed by 4-coumaric acid: CoA ligase (4CL). Herein, we report two 4CL paralogs from tea plant, Cs4CL1 and Cs4CL2, which are a member of class I and II of this gene family, respectively. Cs4CL1 was mainly expressed in roots and stems, while Cs4CL2 was mainly expressed in leaves. The promoter of Cs4CL1 had AC, nine types of light sensitive (LSE), four types of stress-inducible (SIE), and two types of meristem-specific elements (MSE). The promoter of Cs4CL2 also had AC and nine types of LSEs, but only had two types of SIEs and did not have MSEs. In addition, the LSEs varied in the two promoters. Based on the different features of regulatory elements, three stress treatments were tested to understand their expression responses to different conditions. The resulting data indicated that the expression of Cs4CL1 was sensitive to mechanical wounding, while the expression of Cs4CL2 was UV-B-inducible. Enzymatic assays showed that both recombinant Cs4CL1 and Cs4CL2 transformed 4-coumaric acid (CM), ferulic acid (FR), and caffeic acid (CF) to their corresponding CoA ethers. Kinetic analysis indicated that the recombinant Cs4CL1 preferred to catalyze CF, while the recombinant Cs4CL2 favored to catalyze CM. The overexpression of both Cs4CL1 and Cs4CL2 increased the levels of chlorogenic acid and total lignin in transgenic tobacco seedlings. In addition, the overexpression of Cs4CL2 consistently increased the levels of three flavonoid compounds. These findings indicate the differences of Cs4CL1 and Cs4CL2 in the phenylpropanoid metabolism.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Coenzima A/genética , Coenzima A/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Cinética , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá
9.
J Agric Food Chem ; 70(7): 2354-2365, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133826

RESUMO

Flavonoid glycosides are typical bitter and astringent tasting compounds that contribute to the taste of tea beverages. However, the genes that contribute to the biosynthesis of bitter compounds (e.g., flavanone 7-O-neohesperidoside) in tea plants have yet to be identified. In this study, we identified 194 UDP-glycosyltransferases (UGTs) from the tea transcriptome database. Among them, two genes, CsUGT75L12 and CsUGT79B28, encoding flavonoid 7-O-glycosyltransferase and 7-O-glucoside(1→2)rhamnosyltransferase, respectively, were identified from Camellia sinensis. In vitro, the purified recombinant enzyme rCsUGT75L12 specifically transports the glucose unit from UDP-glucose to the 7-OH position of the flavonoid to produce the respective 7-O-glucoside. rCsUGT79B28 regiospecifically transfers a rhamnose unit from UDP-rhamnose to the 2″-OH position of flavonoid 7-O-glucosides to produce flavonoid 7-O-di-glycosides. Additionally, the expression profiles of the two CsUGTs were correlated with the accumulation patterns of 7-O-glucoside and 7-O-neohesperidoside, respectively, in tea plants. These results indicated that the two CsUGTs are involved in the biosynthesis of bitter flavonoid 7-O-neohesperidoside through the sequential glucosylation and rhamnosylation of flavonoids in C. sinensis. Taken together, our findings provided not only molecular insights into flavonoid di-glycoside metabolism in tea plants but also crucial molecular markers for controlling the bitterness and astringent taste of tea.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Paladar , Chá/metabolismo , Difosfato de Uridina/metabolismo
10.
Tree Physiol ; 42(5): 1043-1058, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34850946

RESUMO

Unlike that of other crops, the growth of tea plants can be promoted by aluminum, but its regulation mechanism remains unclear. Some endophytes can also promote growth of plant hosts. In this paper, tea roots treated with aluminum were used to study the growth-promoting traits and aluminum tolerance of endophytes. Meta-16S rDNA analysis revealed that Burkholderia was enriched in tea roots after aluminum treatment, and it was the dominant strain for hydroponic tea roots and field tea roots. Actinomycetes constituted the dominant strains in hydroponic tea seedlings treated with aluminum. Sixteen endophytic bacteria, including 12 strains of Firmicutes, 2 strains of Proteobacteria and 2 strains of Actinomycetes, were isolated and identified from hydroponic tea roots treated with different aluminum concentrations. Growth-promoting activity analysis showed that the isolated endophytic bacteria all had more than one plant growth-promoting trait. Among them, B4 (Bacillus nealsonii), B8 (Brevibacterium frigoritolerans) and A2 (Nocardia nova) bacteria each had three growth-promoting traits. Aluminum tolerance ability analysis indicated that endophyte A1 (Leifsonia shinshuensis) had the strongest aluminum tolerance ability, up to 200 mg l-1 aluminum. Plant-bacteria interactions showed that endophytes A1, A2 and B4 and their synthetic community all had a growth-promoting effect on the growth of wheat lateral roots. Moreover, endophytes A1 and B4 alleviated aluminum stress in wheat. Endophyte A1 also promoted the growth of tea cuttings, especially lateral roots, with/without aluminum. Taken together, aluminum enhanced the distribution of aluminum-tolerant and growth-promoting bacteria, thereby promoting the growth of tea roots. This study provides a new aspect for research on the mechanism by which aluminum promotes tea plant growth.


Assuntos
Alumínio , Camellia sinensis , Bactérias/genética , Endófitos/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas , Chá
11.
J Agric Food Chem ; 69(35): 10069-10081, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410120

RESUMO

Many studies have shown that phenolic compounds such as lignin and flavonoids enhance plant resistance. Tea plants are rich in flavonoid compounds. Whether these compounds are related to tea plant resistance is unclear. In this study, an interesting conclusion was drawn on the basis of experimental results: in response to abiotic stress (except for sucrose treatment), gene expression was increased in the phenylpropanoid and lignin pathways and was reduced in the flavonoid pathway in tea plants. CsHCTs, the genes located at the branch point of the lignin and flavonoid pathways, are most suitable for regulating the ratio of carbon flow in the lignin pathway and flavonoid synthesis. Enzymatic and genetic modification experiments proved that CsHCTs encode hydroxycinnamoyl-coenzyme A:shikimate/quinate hydroxycinnamoyl transferase in vitro and in vivo. Furthermore, the genetic modification results showed that the contents of phenolic acids and lignin were increased in tobacco and Arabidopsis plants overexpressing CsHCTs, whereas the content of flavonol glycosides was decreased. Both types of transgenic plants showed resistance to many abiotic stresses and bacterial infections. We speculate that CsHCTs participate in regulation of the metabolic flow of carbon from the flavonoid pathway to the chlorogenic acid, caffeoylshikimic acid, and lignin pathways to increase resistance to biotic and abiotic stresses.


Assuntos
Arabidopsis , Camellia sinensis , Arabidopsis/genética , Arabidopsis/metabolismo , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Chá
12.
Plant J ; 107(5): 1466-1477, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174125

RESUMO

Rubus chingii Hu (Fu-Pen-Zi), a perennial woody plant in the Rosaceae family, is a characteristic traditional Chinese medicinal plant because of its unique pharmacological effects. There are abundant hydrolyzable tannin (HT) components in R. chingii that provide health benefits. Here, an R. chingii chromosome-scale genome and related functional analysis provide insights into the biosynthetic pathway of HTs. In total, sequence data of 231.21 Mb (155 scaffolds with an N50 of 8.2 Mb) were assembled into seven chromosomes with an average length of 31.4 Mb, and 33 130 protein-coding genes were predicted, 89.28% of which were functionally annotated. Evolutionary analysis showed that R. chingii was most closely related to Rubus occidentalis, from which it was predicted to have diverged 22.46 million years ago (Table S8). Comparative genomic analysis showed that there was a tandem gene cluster of UGT, carboxylesterase (CXE) and SCPL genes on chromosome 02 of R. chingii, including 11 CXE, eight UGT, and six SCPL genes, which may be critical for the synthesis of HTs. In vitro enzyme assays indicated that the proteins encoded by the CXE (LG02.4273) and UGT (LG02.4102) genes have tannin hydrolase and gallic acid glycosyltransferase functions, respectively. The genomic sequence of R. chingii will be a valuable resource for comparative genomic analysis within the Rosaceae family and will be useful for understanding the biosynthesis of HTs.


Assuntos
Vias Biossintéticas , Cromossomos de Plantas/genética , Genoma de Planta/genética , Taninos Hidrolisáveis/metabolismo , Rubus/genética , Evolução Molecular , Genômica , Família Multigênica , Rubus/metabolismo
13.
Plant Sci ; 300: 110632, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33180711

RESUMO

Flavonol derivatives are a group of flavonoids benefiting human health. Their abundant presence in tea is associated with astringent taste. To date, mechanism pertaining to the biosynthesis of flavonols in tea plants remains unknown. In this study, we used bioinformatic analysis mining the tea genome and obtained three cDNAs that were annotated to encode flavonol synthases (FLS). Three cDNAs, namely CsFLSa, b, and c, were heterogenously expressed in E. coli to induce recombinant proteins, which were further used to incubate with three substrates, dihydrokampferol (DHK), dihydroquercetin (DHQ), and dihydromyricetin (DHM). The resulting data showed that three rCsFLSs preferred to catalyze (DHK). Overexpression of each cDNA in tobacco led to the increase of kampferol and the reduction of anthocyanins in flowers. Further metabolic profiling of flavan-3-ols in young tea shoots characterized that kaempferol derivatives were the most abundant, followed by quercetin and then myricetin derivatives. Taken together, these data characterized the key step committed to the biosynthesis of flavonols in tea leaves. Moreover, these data enhance understanding the metabolic accumulation relevance between flavonols and other main flavonoids such as flavan-3-ols in tea leaves.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonóis/biossíntese , Flavonóis/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Chá/química
14.
J Agric Food Chem ; 68(30): 7861-7869, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32680420

RESUMO

Aluminum (Al) influences crop yield in acidic soil. The tea plant (Camellia sinensis) has high Al tolerance with abundant monomeric catechins in its leaves, especially epigallocatechin gallate (EGCG), and polymeric proanthocyanidins in its roots (rPA). The role of these polyphenols in the Al resistance of tea plants is unclear. In this study, we observed that these polyphenols could form complexes with Al in vitro, and complexation capacity was positively influenced by high solution pH (pH 5.8), polyphenol type (rPA and EGCG), and high Al concentration. In the 27Al nuclear magnetic resonance (NMR) experiment, rPA-Al and EGCG-Al complex signals could be detected both in vitro and in vivo. The rPA-Al and EGCG-Al complexes were detected in roots and old leaves, respectively, of both greenhouse seedlings and tea garden plants. Furthermore, in seedlings, Al accumulated in roots and old leaves and mostly existed in the apoplast in binding form. These results indicate that the formation of complexes with tea polyphenols in vivo plays a vital role in Al resistance in the tea plant.


Assuntos
Alumínio/metabolismo , Camellia sinensis/metabolismo , Proantocianidinas/metabolismo , Alumínio/toxicidade , Camellia sinensis/química , Camellia sinensis/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proantocianidinas/química , Plântula/química , Plântula/efeitos dos fármacos , Plântula/metabolismo
15.
Food Res Int ; 135: 109276, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527476

RESUMO

Wild tea plants, which are classified into different species in the section Thea of the genus Camellia, are widely distributed in southern China. Tea produced from these plants has a unique flavor, which is different from that of tea produced from tea cultivars. In this study, we performed a comparative analysis of morphology, phylogenetic relationships, and phenolic compound metabolism between two wild tea plants (Gujing and Siqiu) and a tea cultivar (Shuchazao). Siqiu and Gujing tea plants had similar morphological traits and could be phylogenetically classified into a same cluster, which was entirely separate from the cluster containing widely cultivated cultivars such as Camellia sinensis cv. Shuchazao. Combined metabolomic and transcriptome analyses revealed that UGT84a22 was highly expressed in Gujing leaves compared with Shuchazao and Siqiu leaves, which may lead to the high accumulation of galloylquinic acid in Gujing leaves. A 14-bp deletion spanning the -765-(-7 5 1) range in the F3'5'H promoter potentially led to low F3'5'H expression levels in Siqiu and Gujing tea plants, which severely disrupted the accumulation of trihydroxy flavonoids in Gujing and Siqiu tea leaves. The high astringency intensity in Gujing tea could be due to the high accumulation of proanthocyanidins and galloylquinic acid. The results of the present study may improve our understanding of the metabolic characteristics of each evolutionary group of species or varieties in the section Thea of the genus Camellia.


Assuntos
Camellia sinensis , Camellia , China , Filogenia , Chá
16.
Food Chem ; 305: 125507, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622805

RESUMO

The contributions of many polyphenols other than catechins and flavonols to the astringency of tea are often neglected. Here, the contributions of polyphenols were assessed through targeted metabolic profiling using liquid chromatography-mass spectrometry. A total of 86 polyphenols were identified from 47 green tea samples with varying astringency scores, of which 76 compounds were relatively quantified. A correlation matrix analysis revealed that monohydroxyflavonol and acyl derivatives of polyphenols, except for galloylated catechins, had negative correlations with the other polyphenols. Principal component analysis revealed a distinct separation of monohydroxyflavonol and acyl derivatives of polyphenols from the other polyphenols. The results suggest metabolic differences in terms of hydroxylation, glycosylation, acylation, and condensation reactions of polyphenols between the different tea samples, particularly between the samples obtained in spring and autumn. The correlation analysis showed that metabolic fluxes toward the aforementioned four reactions of polyphenols played unique roles in the astringency of tea infusions.


Assuntos
Espectrometria de Massas , Metabolômica/métodos , Polifenóis/metabolismo , Paladar , Chá/metabolismo
17.
Plant J ; 101(1): 18-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454118

RESUMO

The plant flavonoid dogma proposes that labile plant flavonoid carbocations (PFCs) play vital roles in the biosynthesis of proanthocyanidins (PAs). However, whether PFCs exist in plants and how PFCs function remain unclear. Here, we report the use of an integrative strategy including enzymatic assays, mutant analysis, metabolic engineering, isotope labeling and metabolic profiling to capture PFCs and demonstrate their functions. In anthocyanidin reductase (ANR) assays, an (-)-epicatechin conjugate was captured in protic polar nucleophilic methanol alone or methanol-HCl extracts. Tandem mass spectrum (MS/MS) analysis characterized this compound as an (-)-epicatechin-4-O-methyl (EOM) ether, which resulted from (-)-epicatechin carbocation and the methyl group of methanol. Acid-based catalysis of procyanidin B2 and B3 produced four compounds, which were annotated as two EOM and two (+)-catechin-4-O-methyl (COM) ethers. Metabolic profiling of seven PA pathway mutants showed an absence or reduction of two EOM ether isomers in seeds. Camellia sinensis ANRa (CsANRa), leucoanthocyanidin reductase c (CsLARc), and CsMYB5b (a transcription factor) were independently overexpressed for successful PA engineering in tobacco. The EOM ether was remarkably increased in CsANRa and CsMYB5b transgenic flowers. Further metabolic profiling for eight green tea tissues revealed two EOM and two COM ethers associated with PA biosynthesis. Moreover, an incubation of (-)-epicatechin or (+)-catechin with epicatechin carbocation in CsANRa transgenic flower extracts formed dimeric procyanidin B1 or B2, demonstrating the role of flavan-3-ol carbocation in the formation of PAs. Taken together, these findings indicated that flavan-3-ol carbocations exist in extracts and are involved in the biosynthesis of PAs of plants.


Assuntos
Flavonoides/metabolismo , Proantocianidinas/biossíntese , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Gene ; 717: 144046, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31434006

RESUMO

Flavonoids are major polyphenol compounds in plant secondary metabolism. The hydroxylation pattern of the B-ring of flavonoids is determined by the flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H). In this paper, one CsF3'H and two CsF3'5'Hs (CsF3'5'Ha and CsF3'5'Hb) were isolated. The phylogenetic tree results showed that F3'H and F3'5'Hs belong to the CYP75B and CYP75A, respectively. The Expression pattern analysis showed that the expression of CsF3'5'Ha and CsF3'5'Hb in the bud and 1st leaf were higher than other tissues. However, the CsF3'H had the highest expression in the 4th and mature leaf. The correlation analysis showed that the expression of CsF3'5'Hs is positively associated with the concentration of B-trihydroxylated catechins, and the expression of CsF3'H is positively associated with the Q contentration. Heterologous expression of these genes in yeast showed that CsF3'H and CsF3'5'Ha can catalyze flavanones, flavonols and flavanonols to the corresponding 3', 4' or 3', 4', 5'-hydroxylated compounds, for which the optimum substrate is naringenin. The enzyme of CsF3'5'Hb can only catalyze flavonols (including K and Q) and flavanonols (DHK and DHQ), of which the highest activities in catalyzing are DHK. Interestingly, The experiment of site-directed mutagenesis suggested that two novel sites near the C-terminal were discovered impacting on the activity of the CsF3'5'H. These results provide a significantly molecular basis on the accumulation B-ring hydroxylation of flavonoids in tea plant.


Assuntos
Camellia sinensis/genética , Sistema Enzimático do Citocromo P-450/genética , Flavonoides/metabolismo , Camellia sinensis/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/química , Regulação da Expressão Gênica de Plantas , Hidroxilação , Mutagênese Sítio-Dirigida , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética
19.
Sci Data ; 6(1): 122, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308375

RESUMO

Tea is a globally consumed non-alcohol beverage with great economic importance. However, lack of the reference genome has largely hampered the utilization of precious tea plant genetic resources towards breeding. To address this issue, we previously generated a high-quality reference genome of tea plant using Illumina and PacBio sequencing technology, which produced a total of 2,124 Gb short and 125 Gb long read data, respectively. A hybrid strategy was employed to assemble the tea genome that has been publicly released. We here described the data framework used to generate, annotate and validate the genome assembly. Besides, we re-predicted the protein-coding genes and annotated their putative functions using more comprehensive omics datasets with improved training models. We reassessed the assembly and annotation quality using the latest version of BUSCO. These data can be utilized to develop new methodologies/tools for better assembly of complex genomes, aid in finding of novel genes, variations and evolutionary clues associated with tea quality, thus help to breed new varieties with high yield and better quality in the future.


Assuntos
Camellia sinensis/genética , Genoma de Planta , Anotação de Sequência Molecular , Análise de Sequência de DNA , Chá
20.
PLoS One ; 14(7): e0218336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31265465

RESUMO

Flavonoids are one of the largest secondary metabolite groups, which are widely present in plants. Flavonoids include anthocyanins, proanthocyanidins, flavonols and isoflavones. In particular, proanthocyanidins possess beneficial effects for ruminant animals in preventing lethal pasture bloat. As a major legume forage, alfalfa (Medicago sativa) contains little proanthocyanidins in foliage to combat bloat. In an attempt to improve proanthocyanidin content in alfalfa foliage, we over-expressed two MYB transcription factors (CsMYB5-1 and CsMYB5-2) from tea plant that is rich in proanthocyanidins. We showed that, via targeted metabolite and transcript analyses, the transgenic alfalfa plants accumulated higher levels of flavonoids in stems/leaves than the control, in particular anthocyanins and proanthocyanidins. Over-expression of CsMYB5-1 and CsMYB5-2 induced the expression levels of genes involved in flavonoid pathway, especially anthocyanin/proanthocyanidin-specific pathway genes DFR, ANS and ANR in stems/leaves. Both anthocyanin/proanthocyanidin content and the expression levels of several genes were conversely decreased in flowers of the transgenic lines than in control. Our results indicated that CsMYB5-1 and CsMYB5-2 differently regulate anthocyanins/proanthocyanidins in stems/leaves and flowers. Our study provides a guide for increasing anthocyanin/proanthocyanidin accumulation in foliage of legume forage corps by genetic engineering. These results also suggest that it is feasible to cultivate new varieties for forage production to potentially solve pasture bloat, by introducing transcription factors from typical plants with high proanthocyanidin level.


Assuntos
Antocianinas , Camellia sinensis/genética , Expressão Ectópica do Gene , Medicago sativa , Proteínas de Plantas , Plantas Geneticamente Modificadas , Proantocianidinas , Fatores de Transcrição , Animais , Antocianinas/biossíntese , Antocianinas/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proantocianidinas/biossíntese , Proantocianidinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA