Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982639

RESUMO

With far-red-light supplementation (3 W·m-2, and 6 W·m-2), the flower budding rate, plant height, internode length, plant display, and stem diameter of Chinese kale were largely elevated, as well as the leaf morphology such as leaf length, leaf width, petiole length, and leaf area. Consequently, the fresh weight and dry weight of the edible parts of Chinese kale were markedly increased. The photosynthetic traits were enhanced, and the mineral elements were accumulated. To further explore the mechanism that far-red light simultaneously promoted the vegetative growth and reproductive growth of Chinese kale, this study used RNA sequencing to gain a global perspective on the transcriptional regulation, combining it with an analysis of composition and content of phytohormones. A total of 1409 differentially expressed genes were identified, involved mainly in pathways related to photosynthesis, plant circadian rhythm, plant hormone biosynthesis, and signal transduction. The gibberellins GA9, GA19, and GA20 and the auxin ME-IAA were strongly accumulated under far-red light. However, the contents of the gibberellins GA4 and GA24, the cytokinins IP and cZ, and the jasmonate JA were significantly reduced by far-red light. The results indicated that the supplementary far-red light can be a useful tool to regulate the vegetative architecture, elevate the density of cultivation, enhance the photosynthesis, increase the mineral accumulation, accelerate the growth, and obtain a significantly higher yield of Chinese kale.


Assuntos
Brassica , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Brassica/metabolismo , Transcriptoma , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo
2.
Front Plant Sci ; 13: 888976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755648

RESUMO

Tomatoes (Solanum lycopersicum L. Micro-Tom) were grown in a plastic greenhouse. When plants anthesis, the 100 µmol m-2 s-1 blue light-emitting diode (LED) light (430 ± 10 nm) was supplemented from 6:00 to 18:00. There were 5 treatments, which contained different blue light frequencies with the same intensity: S6 (30 min blue light and 30 min pause), S8 (30 min blue light and 15 min pause), S10 (30 min blue and 8 min pause), S12 (continuous blue light for 12 h), and control (CK) (natural light, without any supplemental light). Agronomic traits and nutritional qualities of tomato fruits were measured at 30, 34, 38, 42, and 46 days after anthesis (DAA), respectively. Different frequencies of supplemental blue light could accelerate flowering of tomato plants and promote fruit ripening about 3-4 days early via promoting ethylene evolution of fruits, which significantly facilitated the processes of color change and maturity in tomato fruits. The contents of lycopene, total phenolic compounds, total flavonoids, vitamin C, and soluble sugar, as well as the overall antioxidant activity of tomato fruits were significantly enhanced by all the supplemental blue light treatments. In all, different frequencies of supplemental blue light prominently reinforced the antioxidant levels and nutritional qualities of tomato fruits, especially lycopene content, and S10 was more optimal for tomato fruits production in a plastic greenhouse.

3.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361799

RESUMO

Addition of selenium or application of ultraviolet A (UVA) radiation for crop production could be an effective way of producing phytochemical-rich food. This study was conducted to investigate the effects of selenium and UVA radiation, as well as their combination on growth and phytochemical contents in broccoli microgreens. There were three treatments: Se (100 µmol/L Na2SeO3), UVA (40 µmol/m2/s) and Se + UVA (with application of Se and UVA). The control (CK) was Se spraying-free and UVA radiation-free. Although treatment with Se or/and UVA inhibited plant growth of broccoli microgreens, results showed that phytochemical contents increased. Broccoli microgreens under the Se treatment had higher contents of total soluble sugars, total phenolic compounds, total flavonoids, ascorbic acid, Fe, and organic Se and had lower Zn content. The UVA treatment increased the contents of total chlorophylls, total soluble proteins, total phenolic compounds, and FRAP. However, the Se + UVA treatment displayed the most remarkable effect on the contents of total anthocyanins, glucoraphanin, total aliphatic glucosinolates, and total glucosinolates; here, significant interactions between Se and UVA were observed. This study provides valuable insights into the combinational selenium and UVA for improving the phytochemicals of microgreens grown in an artificial lighting plant factory.


Assuntos
Brassica/crescimento & desenvolvimento , Produção Agrícola , Compostos Fitoquímicos/biossíntese , Selênio/farmacologia , Ácido Ascórbico/metabolismo , Brassica/efeitos dos fármacos , Brassica/efeitos da radiação , Flavonoides/metabolismo , Flavonoides/efeitos da radiação , Ferro/metabolismo , Fenol/metabolismo , Fenol/efeitos da radiação , Compostos Fitoquímicos/efeitos da radiação , Açúcares/metabolismo , Açúcares/efeitos da radiação , Raios Ultravioleta
4.
Front Plant Sci ; 12: 799376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975989

RESUMO

Chinese kale baby leaves were hydroponically cultured under the basal light (Red: white LEDs = 2:3 at PPFD of 250 µmol·m-2·s-1) with different supplemental lighting, including individual ultraviolet-A (UV-A, 380 ± 10 nm, 20 µmol·m-2·s-1), far-red (FR, 735 ± 10 nm, 30 µmol·m-2·s-1) light, and their combination (UF) radiation in an artificial light plant factory. Effects of supplemental light qualities on morphology and physiology as well as health-promoting compounds of Chinese kale baby leaves were investigated. Application of UV-A and FR presented a positive effect on biomass, with a pronounced increase in petiole length, stem diameter, main stem length, and leaf area. Notably, plants under UF grew more vigorously than under other treatments. Higher levels of FRAP, vitamin C, total phenolic, and flavonoid were observed in plants under UV-A, while no striking changes or a decreasing trend recorded under FR and UF. Moreover, UV-A enhanced the glucosinolates (GLs) accumulation in Chinese kale baby leaves by increasing the predominant GLs (glucoraphanin and glucobrassicin) contents. RT-qPCR results indicated that UV-A upregulated the gene expressions of transcription factors and core structure genes related to GLs biosynthesis. However, downregulated or unchanged gene expressions of GLs biosynthesis-related genes in Chinese kale baby leaves were observed in FR and UF. Therefore, UV-A was benefited for the production of functional substances, while FR was conducive to a significant increase in crop yield. The combination of UV-A and FR, as a balance between yield and production of secondary metabolite, provided a new perspective for the application of artificial light in horticultural crop production.

5.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086545

RESUMO

Selenium (Se) supplement was combined with different LED light qualities to investigate mutual effects on the growth, nutritional quality, contents of glucosinolates and mineral elements in broccoli sprouts. There were five treatments: CK:1R1B1G, 1R1B1G+Se (100 µmol L-1 Na2SeO3), 1R1B+Se, 1R2B+Se, 2R1B+Se, 60 µmol m-2 s-1 PPFD, 12 h/12 h (light/dark). Sprouts under a combination of selenium and LED light quality treatment exhibited no remarkable change fresh weight, but had a shorter hypocotyl length, lower moisture content and heavier dry weight, especially with 1R2B+Se treatment. The contents of carotenoid, soluble protein, soluble sugar, vitamin C, total flavonoids, total polyphenol and contents of total glucosinolates and organic Se were dramatically improved through the combination of Se and LED light quality. Moreover, heat map and principal component analysis showed that broccoli sprouts under 1R2B+Se treatment had higher nutritional quality and health-promoting compound contents than other treatments. This suggests that the Se supplement under suitable LED lights might be beneficial to selenium-biofortified broccoli sprout production.


Assuntos
Brassica/crescimento & desenvolvimento , Proteínas/metabolismo , Plântula/crescimento & desenvolvimento , Selênio/farmacologia , Ácido Ascórbico/biossíntese , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/efeitos da radiação , Carotenoides/metabolismo , Flavonoides/biossíntese , Glucosinolatos/biossíntese , Humanos , Luz , Polifenóis/biossíntese , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação , Selênio/metabolismo , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA