Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Assay Drug Dev Technol ; 12(1): 80-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24547742

RESUMO

Receptor tyrosine kinases (RTKs) regulate a wide range of important biological activities, including cell proliferation, differentiation, migration, and apoptosis. Abnormalities in RTKs are involved in numerous diseases, including cancer and other proliferative disorders. AXL belongs to the TAM (Tyso3, AXL, and Mer) family of RTKs. The AXL signaling pathway represents an attractive target for the treatment of diseases, such as cancer. Using phospho-AKT as readout, a high-throughput 384-well cell-based assay was established in the NCI-H1299 human non-small cell lung carcinoma cell line to evaluate compound potency in inhibiting AXL pathway activation. In addition, a counter screen assay was established in the same cellular background to differentiate AXL kinase inhibitors from AXL receptor antagonists, which block the interaction of AXL and its natural ligand GAS6. These cell-based functional assays are useful tools in the identification and optimization of small molecules and biological reagents for potential therapeutics for the treatment of GAS6/AXL-related diseases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Bioensaio/métodos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/patologia , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Transdução de Sinais/efeitos dos fármacos , Receptor Tirosina Quinase Axl
2.
J Biomol Screen ; 18(9): 1072-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24062352

RESUMO

Transporter proteins are known to play a critical role in affecting the overall absorption, distribution, metabolism, and excretion characteristics of drug candidates. In addition to efflux transporters (P-gp, BCRP, MRP2, etc.) that limit absorption, there has been a renewed interest in influx transporters at the renal (OATs, OCTs) and hepatic (OATPs, BSEP, NTCP, etc.) organ level that can cause significant clinical drug-drug interactions (DDIs). Several of these transporters are also critical for hepatobiliary disposition of bilirubin and bile acid/salts, and their inhibition is directly implicated in hepatic toxicities. Regulatory agencies took action to address transporter-mediated DDI with the goal of ensuring drug safety in the clinic and on the market. To meet regulatory requirements, advanced bioassay technology and automation solutions were implemented for high-throughput transporter screening to provide structure-activity relationship within lead optimization. To enhance capacity, several functional assay formats were miniaturized to 384-well throughput including novel fluorescence-based uptake and efflux inhibition assays using high-content image analysis as well as cell-based radioactive uptake and vesicle-based efflux inhibition assays. This high-throughput capability enabled a paradigm shift from studying transporter-related issues in the development space to identifying and dialing out these concerns early on in discovery for enhanced mechanism-based efficacy while circumventing DDIs and transporter toxicities.


Assuntos
Descoberta de Drogas , Drogas em Investigação/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Drogas em Investigação/química , Drogas em Investigação/metabolismo , Corantes Fluorescentes , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/química , Relação Estrutura-Atividade
3.
J Biol Chem ; 278(40): 38537-47, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12882957

RESUMO

MRP1 belongs to subfamily "C" of the ABC transporter superfamily. The nucleotide-binding domains (NBDs) of the C family members are relatively divergent compared with many ABC proteins. They also differ in their ability to bind and hydrolyze ATP. In MRP1, NBD1 binds ATP with high affinity, whereas NBD2 is hydrolytically more active. Furthermore, ATP binding and/or hydrolysis by NBD2 of MRP1, but not NBD1, is required for MRP1 to shift from a high to low affinity substrate binding state. Little is known of the structural basis for these functional differences. One minor structural difference between NBDs is the presence of Asp COOH-terminal to the conserved core Walker B motif in NBD1, rather than the more commonly found Glu present in NBD2. We show that the presence of Asp or Glu following the Walker B motif profoundly affects the ability of the NBDs to bind, hydrolyze, and release nucleotide. An Asp to Glu mutation in NBD1 enhances its hydrolytic capacity and affinity for ADP but markedly decreases transport activity. In contrast, mutations that eliminate the negative charge of the Asp side chain have little effect. The decrease in transport caused by the Asp to Glu mutation in NBD1 is associated with an inability of MRP1 to shift from high to low affinity substrate binding states. In contrast, mutation of Glu to Asp markedly increases the affinity of NBD2 for ATP while decreasing its ability to hydrolyze ATP and to release ADP. This mutation eliminates transport activity but potentiates the conversion from a high to low affinity binding state in the presence of nucleotide. These observations are discussed in the context of catalytic models proposed for MRP1 and other ABC drug transport proteins.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Ácidos Carboxílicos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Ácido Aspártico/química , Transporte Biológico , Catálise , Linhagem Celular , Membrana Celular/metabolismo , DNA Complementar/metabolismo , Resistência a Múltiplos Medicamentos , Eletroforese em Gel de Poliacrilamida , Ácido Glutâmico/química , Humanos , Hidrólise , Insetos , Leucotrieno C4/metabolismo , Luz , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Vanadatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA