Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34956390

RESUMO

Ulcerative colitis (UC) is a relapsing inflammatory disease with an unknown precise etiology. The purpose of this study is to investigate the protective effects of Gardenia jasminoides Ellis fruit extracts (GFE) on 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. GFE (50 mg/kg, 100 mg/kg) were administered orally for 7 days after induction. Meanwhile, the chemical components of GFE were performed by UPLC-QTOF-MS/MS. GFE significantly decreased DAI scores and ameliorated macroscopic and histologic damage. It also reduced the levels of MPO, NO, MDA, IL-1ß, TNF-α, and IL-6, while increasing the level of SOD. Moreover, 56 components were identified in GFE using a UPLC-QTOF-MS/MS method, which can be categorized into six structural groups. Our results indicated that GFE has an ameliorative effect on TNBS-induced colitis in rats, which may further verify its anti-inflammatory and antioxidative properties. Therefore, GFE can be a promising protective agent of colitis that deserves further investigation.

2.
Chemosphere ; 266: 128984, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33234305

RESUMO

DNA-stable isotope probing (SIP) with 13C labeled phenanthrene (PHE) as substrate was used to identify specific bacterial degraders during natural attenuation (NA) and bioaugmentation (BA) in petroleum contaminated soil. BA, with the addition of a bacterial suspension mixture named GZ, played a significant role in PHE degradation with a higher PHE removal rate (∼90%) than that of NA (∼80%) during the first 3 days, and remarkably altered microbial communities. Of the five strains introduced in BA, only two genera, particularly, Ochrobactrum, Rhodococcus were extensively responsible for PHE-degradation. Six (Bacillus sp., Acinetobacter sp., Xanthomonas sp., Conexibacter sp., Acinetobacter sp. and Staphylococcus sp.) and seven (Ochrobactrum sp., Rhodococcus sp., Alkanindiges sp., Williamsia sp., Sphingobium sp., Gillisia sp. and Massilia sp.) bacteria responsible for PHE degradation were identified in NA and BA treatments, respectively. This study reports for the first time the association of Xanthomonas sp., Williamsia sp., and Gillisia sp. to PHE degradation.


Assuntos
Petróleo , Fenantrenos , Poluentes do Solo , Biodegradação Ambiental , DNA , Isótopos , Fenantrenos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
3.
Environ Sci Pollut Res Int ; 25(3): 2830-2841, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143260

RESUMO

This study evaluated petroleum contamination in the Yanchang (Shaanxi Yanchang Petroleum (Group) Co., Ltd.) oilfield, located in the loess plateau region of northern Shaanxi, China. Surface soil and sediment samples were collected from the wasteland, farmland, and riverbed in this area to assess the following parameters: total petroleum hydrocarbon (TPH), n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and carbon isotope ratios (δ13C). The results showed that TPH and PAH levels in the study area were 907-3447 mg/kg and 103.59-563.50 µg/kg, respectively, significantly higher than the control samples (TPH 224 mg/kg, PAHs below method quantification limit, MQL). Tests using δ13C to detect modified TPH (2238.66 to 6639.42 mg/kg) in the wastelands adjacent to the oil wells revealed more significant contamination than tests using extraction gravimetric analysis. In addition, "chemical fingerprint" indicators, such as low to high molecular weight (LMW/HMW) hydrocarbons, carbon preference index (CPI), and pristine/phytane (Pr/Ph), further confirmed the presence of heavy petroleum contamination and weathering. This has resulted in a nutrient imbalance and unsuitable pH and moisture conditions for microbial metabolic activities. This study evaluates petroleum contamination, which can inform contamination remediation on a case by case basis.


Assuntos
Isótopos de Carbono/análise , Campos de Petróleo e Gás , Poluição por Petróleo/análise , Petróleo/análise , Poluentes do Solo/análise , Solo/química , China , Monitoramento Ambiental
4.
Zhongguo Zhong Yao Za Zhi ; 40(12): 2357-62, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26591525

RESUMO

Hedyotis hedyotidea has been traditionally used for the treatment of arthritis, cold, cough, gastro-enteritis, headstroke, etc. But few studies have screened the active compounds from extracts of H. hedyotidea. In this study, the structure of the chemical constituents from stems of H. hedyotidea were determined and the immunosuppressive activity of the compounds was evaluated. The compounds were separated and purified with silica gel, gel column chromatographies and preparative HPLC, and their structures were identified by spectral methods such as MS and NMR. Eleven compounds were obtained and identified as(6S,9S) -vomifoliol (1), betulonic acid (2), betulinic acid (3), betulin(4), 3-epi-betulinic acid (5), ursolic acid (6), ß-sitosterol (7), stigmast-4-en-3-one (8), 7ß-hydroxysitosterol (9), (3ß,7ß) -7-methoxystigmast-5-en-3-ol (10) and morindacin (11). This is the first report of compounds 1, 2, 4, 8, 9, 10 and 11 from H. hedyotidea. Compounds 1, 2 and 8-11 were firstly isolated from the genus Hedyotis, and compounds 9 and 10 were isolated from the family Rubiaceae for the first time. The immunosuppressive activity of these compounds was tested using the lymphocyte transsormationtest. Compounds 4, 6 and 9 showed significant immunosuppressive activity.


Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Hedyotis/química , Imunossupressores/química , Imunossupressores/farmacologia , Caules de Planta/química , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Imunossupressores/isolamento & purificação , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular
5.
J Asian Nat Prod Res ; 15(5): 466-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23614827

RESUMO

One new lignan (7S,8R,7'R,8'R)-7-(3,4-methylenedioxyphenyl)-8,8'-dimethyl-8'-hydroxyl-7'-methoxyl-7'-(3',4'-methylenedioxyphenyl)-tetrahydrofuran (1), one new sesquiterpene 2-hydroxy-11,12-dehydrocalamenene (2), one new natural product erythro-1-(3,4-dimethoxyphenyl)-4-(3,4-methylenedioxyphenyl)-2,3-dimethyl-butane (3), and two known lignans (+)-anwulignan(erythro-1-(4-hydroxy-3-methoxyphenyl)-4-(3,4-methylenedioxyphenyl)-2,3-dimethyl-butane) (4) and ( - )-zuonin-A (5) were isolated from the stems of Schisandra glaucescens Diels. Their structures were elucidated by spectroscopic methods. The cytotoxicity of compounds 1 and 2 was assayed.


Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Lignanas/isolamento & purificação , Schisandra/química , Sesquiterpenos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Furanos , Células HCT116 , Humanos , Lignanas/química , Lignanas/farmacologia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Caules de Planta/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Estereoisomerismo
6.
Zhongguo Zhong Yao Za Zhi ; 37(22): 3426-9, 2012 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-23373215

RESUMO

OBJECTIVE: To study the chemical constituents from Schisandra glaucescens. METHOD: The chemical constituents were separated and purifed with silica gel, gel column chromatography preparative HPLC, and their structures were identified by such spectral methods as MS and NMR. RESULT: Twelve compounds were separated from petroleum ether fractions, and identified as t-cadinol (1), alpha-cadinol (2), torreyol (3), (+)-ent-epicubenol (4), ent-T-muurolol (5), (-)-15-hydroxycalamenene (6), (-)-cubebol (7), 4-epi-cubebol (8), caryophyllenol-I (9), caryophyllenol-II (10), oxyphyllenodiols A (11), caryolane-1,9/3-diol (12). CONCLUSION: Compounds 4, 6-12 were separated from the genus for the first time, while compounds 1-12 were separated from this plant for the first time.


Assuntos
Medicamentos de Ervas Chinesas/química , Caules de Planta/química , Schisandra/química , Sesquiterpenos/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Sesquiterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA