Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507853

RESUMO

BACKGROUND: Osteoporosis (OP) is a prevalent chronic metabolic bone disease for which limited countermeasures are available. Cnidii Fructus (CF), primarily derived from Cnidium monnieri (L.) Cusson., has been tested in clinical trials of traditional Chinese medicine for the management of OP. Accumulating preclinical studies indicate that CF may be used against OP. MATERIALS AND METHODS: Comprehensive documentation and analysis were conducted to retrieve CF studies related to its main phytochemical components as well as its pharmacokinetics, safety and pharmacological properties. We also retrieved information on the mode of action of CF and, in particular, preclinical and clinical studies related to bone remodeling. This search was performed from the inception of databases up to the end of 2022 and included PubMed, China National Knowledge Infrastructure, the National Science and Technology Library, the China Science and Technology Journal Database, Weipu, Wanfang, the Web of Science and the China National Patent Database. RESULTS: CF contains a wide range of natural active compounds, including osthole, bergapten, imperatorin and xanthotoxin, which may underlie its beneficial effects on improving bone metabolism and quality. CF action appears to be mediated via multiple processes, including the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK), Wnt/ß-catenin and bone morphogenetic protein (BMP)/Smad signaling pathways. CONCLUSION: CF and its ingredients may provide novel compounds for developing anti-OP drugs.


Assuntos
Cnidium , Medicamentos de Ervas Chinesas , Frutas , Osteoporose , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Osteoporose/tratamento farmacológico , Cnidium/química , Frutas/química , Animais , Medicina Tradicional Chinesa , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , 5-Metoxipsoraleno , Remodelação Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Ligante RANK
2.
J Ethnopharmacol ; 312: 116530, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098372

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Simiao San (SmS), a famous traditional Chinese formula, is clinically used to treat patients with hyperuricemia (HUA). However, its mechanism of action on lowering uric acid (UA) and inhibiting inflammation still deserves further investigation. AIM OF THE STUDY: To examine the effect and its possible underlying mechanism of SmS on UA metabolism and kidney injury in HUA mouse. MATERIALS AND METHODS: The HUA mouse model was constructed with the combined administration of both potassium oxalate and hypoxanthine. The effects of SmS on UA, xanthine oxidase (XOD), creatinine (CRE), blood urea nitrogen (BUN), interleukin-10 (IL-10), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by ELISA or biochemical assays. Hematoxylin and eosin (H&E) was used to observe pathological alterations in the kidneys of HUA mice. The expression levels of organic anion transporter 1 (OAT1), recombinant urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), nucleotide binding domain and leucine rich repeat pyrin domain containing 3 (NLRP3), Cleaved-Caspase 1, apoptosis-associated speck like protein (ASC), nuclear factor kappa-B (NF-κB), IL-6, janus kinase 2 (JAK2), phosphor (P)-JAK2, signal transducers and activators of transcription 3 (STAT3), P-STAT3, suppressor of cytokine signaling 3 (SOCS3) were examined by Western blot and/or immunohistochemical (IHC) staining. The major ingredients in SmS were identified by a HPLC-MS assay. RESULTS: HUA mouse exhibited an elevation in serum levels of UA, BUN, CRE, XOD, and the ratio of urinary albumin to creatinine (UACR), and a decline in urine levels of UA and CRE. In addition, HUA induces pro-inflammatory microenvironment in mouse, including an increase in serum levels of IL-1ß, IL-6, and TNF-α, and renal expressions of URAT1, GULT9, NLRP3, ASC, Cleaved-Caspase1, P-JAK2/JAK2, P-STAT3/STAT3, and SOCS3, and a decrease in serum IL-10 level and renal OAT1 expression as well as a disorganization of kidney pathological microstructure. In contrast, SmS intervention reversed these alterations in HUA mouse. CONCLUSION: SmS could alleviate hyperuricemia and renal inflammation in HUA mouse. The action mechanisms behind these alterations may be associated with a limitation of the NLRP3 inflammasome and JAK2/STAT3 signaling pathways.


Assuntos
Hiperuricemia , Nefrite , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Janus Quinase 2/metabolismo , Creatinina , Rim , Inflamação/patologia , Ácido Úrico
3.
Front Pharmacol ; 13: 950535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160420

RESUMO

Jiangtang Sanhao formula (JTSHF), one of the prescriptions for treating the patients with diabetes mellitus (DM) in traditional Chinese medicine clinic, has been demonstrated to effectively ameliorate the clinical symptoms of diabetic patients with overweight or hyperlipidemia. The preliminary studies demonstrated that JTSHF may enhance insulin sensitivity and improve glycolipid metabolism in obese mice. However, the action mechanism of JTSHF on skeletal muscles in diabetic mice remains unclear. To this end, high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic mice were subjected to JTSHF intervention. The results revealed that JTSHF granules could reduce food and water intake, decrease body fat mass, and improve glucose tolerance, lipid metabolism, and insulin sensitivity in the skeletal muscles of diabetic mice. These effects may be linked to the stimulation of GLUT4 expression and translocation via regulating AMPKα/SIRT1/PGC-1α signaling pathway. The results may offer a novel explanation of JTSHF to prevent against diabetes and IR-related metabolic diseases.

4.
J Ethnopharmacol ; 282: 114653, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547420

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: BaZiBuShen formula (BZBS) is clinically used to counteract mental fatigue and to retard the aging process. Brain aging echoes in major risks of human sufferings and has become one of the main challenges to our societies and the health-care systems. AIM OF THE STUDY: To investigate the effect and mode of action of BZBS on aging-associated cognitive impairments. MATERIALS AND METHODS: BZBS was orally administered to D-galactose and NaNO2-induced aging mice. Premature senescence was assessed using the Morris water maze, step-down type passive avoidance, and pole-climbing tests. Telomere length was examined by qPCR analysis. Telomerase activity was assessed using PCR ELISA assay. Mitochondrial complex IV activity was examined by biochemical test. The levels of redox and immune status were determined by ELISA or biochemical assay. The expressions of sirtuin 6 (Sirt6), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), P53, telomerase reverse transcriptase (TERT), heme oxygenase-1 (HO-1), phospho(p)-nuclear factor erythroid-2 related factor 2 (NRF2), caspase-3, Bcl-2 associated x (Bax), and B-cell lymphoma-2 (Bcl-2) in the cerebral cortex were examined by Western blot and/or immunohistochemical staining. RESULTS: BZBS intervention ameliorated reduced brain performances in aging mice, including memory, cognitive, and motor functions. In addition, BZBS administration to aging mice preserved redox homeostasis, attenuated immunosenescence, and maintained telomerase activity and telomere length. Moreover, BZBS treatment were associated with a declines in P53, caspase-3, Bax expressions and an increase in Sirt6, p-HO-1, p-NRF2, PGC-1α, and Bcl-2 expressions in the brains of this rapid aging mouse. CONCLUSIONS: BZBS attenuates premature senescence possibly via the preservation of redox homeostasis and telomere integrity, and inhibition of apoptosis in rapid aging mouse. The mechanism governing the alterations may be associated with through the activation of Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways. The results suggest that BZBS may provide a novel strategy for confronting aging and age-associated diseases.


Assuntos
Medicamentos de Ervas Chinesas , Heme Oxigenase-1 , Proteínas de Membrana , Fator 2 Relacionado a NF-E2 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuínas , Telomerase , Proteína Supressora de Tumor p53 , Animais , Masculino , Camundongos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Proliferação de Células/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Linfócitos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transtornos da Memória/tratamento farmacológico , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Aging Dis ; 12(7): 1587-1604, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34631209

RESUMO

Diabetes, a common metabolic disease with various complications, is becoming a serious global health pandemic. So far there are many approaches in the management of diabetes; however, it still remains irreversible due to its complicated pathogenesis. Recent studies have revealed that nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a vital role in the progression of diabetes and many of its complications, making it a promising therapeutic target in pharmaceutical design. Natural derived herbal medicine, known for its utilization of natural products such as herbs or its bioactive ingredients, is shown to be able to ameliorate hyperglycemia-associated symptoms and to postpone the progression of diabetic complications due to its anti-inflammatory and anti-oxidative properties. In this review, we summarized the role of NLRP3 inflammasome in diabetes and several diabetic complications, as well as 31 active compounds that exert therapeutic effect on diabetic complications via inhibiting NLRP3 inflammasome. Improving our understanding of these promising candidates from natural compounds in herbal medicine targeting NLRP3 inflammasome inspires us the relationship between inflammation and metabolic disorders, and also sheds light on searching potential agents or therapies in the treatment of diabetes and diabetic complications.

6.
Phytomedicine ; 92: 153717, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34583224

RESUMO

BACKGROUND: Radix Ginseng, one of the well-known medicinal herbs, has been used in the management of diabetes and its complications for more than 1000 years. PURPOSE: The aim of this review is devoted to summarize the phytochemistry and pharmacokinetics of Ginseng, and provide evidence for the antidiabetic effects of Ginseng and its ingredients as well as the underlying mechanisms involved. METHODS: For the purpose of this review, the following databases were consulted: the PubMed Database (https://pubmed.ncbi.nlm.nih.gov), Chinese National Knowledge Infrastructure (http://www.cnki.net), National Science and Technology Library (http://www.nstl.gov.cn/), Wanfang Data (http://www.wanfangdata.com.cn/) and the Web of Science Database (http://apps.webofknowledge.com/). RESULTS: Ginseng exhibits glucose-lowering effects in different diabetic animal models. In addition, Ginseng may prevent the development of diabetic complications, including liver, pancreas, adipose tissue, skeletal muscle, nephropathy, cardiomyopathy, retinopathy, atherosclerosis and others. The main ingredients of Ginseng include ginsenosides and polysaccharides. The underlying mechanisms whereby this herb exerts antidiabetic activities may be attributed to the regulation of multiple signaling pathways, including IRS1/PI3K/AKT, LKB1/AMPK/FoxO1, AGEs/RAGE, MAPK/ERK, NF-κB, PPARδ/STAT3, cAMP/PKA/CERB and HIF-1α/VEGF, etc. The pharmacokinetic profiles of ginsenosides provide valuable information on therapeutic efficacy of Ginseng in diabetes. Although Ginseng is well-tolerated, dietary consumption of this herb should follow the doctors' advice. CONCLUSION: Ginseng may offer an alternative strategy in protection against diabetes and its complications through the regulations of the multi-targets via various signaling pathways. Efforts to understand the underlying mechanisms with strictly-controlled animal models, combined with well-designed clinical trials and pharmacokinetic evaluation, will be important subjects of the further investigations and weigh in translational value of this herb in diabetes management.


Assuntos
Diabetes Mellitus , Panax , Plantas Medicinais , Animais , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Fosfatidilinositol 3-Quinases
7.
Oxid Med Cell Longev ; 2021: 5566053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326919

RESUMO

The Jiang Tang Xiao Ke (JTXK) granule is a classic Chinese herbal formula that has been put into clinical use in the treatment of type 2 diabetes mellitus for decades. However, whether its ability to ameliorate skeletal muscle insulin resistance (IR) is through modulation of the AMPK/SIRT1/PGC-1α signaling pathway remains unknown. Therefore, we aimed to investigate the effects of JTXK granules on IR in skeletal muscle of high-fat diet-induced diabetic mice and C2C12 cells and analyze the underlying mechanisms. In the present study, we showed that JTXK granules attenuated body weight gain, reduced body fat mass, improved body lean mass, and enhanced muscle performance of diabetic mice. JTXK granules also improved glucose metabolism and skeletal muscle insulin sensitivity and partially reversed abnormal serum lipid levels, which might be related to the regulation of the AMPK/SIRT1/PGC-1α pathway, both in skeletal muscle tissue of diabetic mice and in C2C12 cells. Furthermore, drug-containing serum of JTXK granules was capable of enhancing glucose uptake and mitochondrial respiration in C2C12 cells, and AMPKα was proven to be closely involved in this process. Taken together, these results suggest that the JTXK granule ameliorates skeletal muscle IR through activation of the AMPK/SIRT1/PGC-1α signaling pathway, which offers a novel perspective of this formula to combat IR-related metabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico , Resistência à Insulina/imunologia , Músculo Esquelético/efeitos dos fármacos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Camundongos , Transdução de Sinais
8.
J Ethnopharmacol ; 279: 114348, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34153448

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Ligustri Lucidi (FLL) is an edible herb with anti-osteoporotic activity, yet whether and how the aqueous extract of this herb affect calcium metabolism in preservation of bone quality remain unclear. AIM OF THE STUDY: To investigate the effects of FLL aqueous extract on calcium balance and short-chain fatty acids (SCFAs) production in ovariectomized (OVX) rats. MATERIALS AND METHODS: OVX rats were daily and orally administrated with FLL aqueous extract (3.5 g/kg) for 14 weeks. The levels of N-terminal propeptide of type I collagen (PINP) and C-terminal telopeptide of type I collagen (CTx-I) in rat serum were evaluated by ELISA assays. The concentration of calcium in serum, urine, and feces were determined by biochemical assays. Bone quality was determined by Micro-CT, a three-point bending assay, and Fourier Transform Infrared (FTIR) Spectrometry. The expressions of Calbindin D28K and Calcium-sensing receptor (CaSR) in kidney as well as the Vitamin D receptor (VDR), the transient receptor potential vanilloid receptor 6 (TRPV6), Calbindin D9k in the duodenum were measured by immunohistochemistry, western blotting, or real-time PCR. The short-chain fatty acids (SCFAs) levels in the feces of the cecum were tested by gas chromatograghy. RESULTS: The administration of FLL to OVX rats resulted in a significant improvement in bone mineral density and biomechanical strength as well as in maintaining bone microstructures and material quality. Meanwhile, the decreased levels of PINP and increased levels of CTx-I in OVX rats were restored by FLL treatment. Additionally, FLL treatment increased calcium absorption, upregulated VDR, TRPV6, Calbindin D9k expressions in the duodenum, Calbindin D28K in kidney, and down-regulated CaSR expression in the kidney, as well as enhanced SCFAs levels in the feces of OVX rats. CONCLUSIONS: FLL aqueous extract may preserve bone quality through regulation of the calcium balance and intestinal SCFAs production in OVX rats. This offers translational value of FLL into osteoporosis clinical trial.


Assuntos
Cálcio/metabolismo , Ligustrum/química , Osteoporose/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Colágeno Tipo I/sangue , Ácidos Graxos Voláteis/metabolismo , Feminino , Frutas , Ovariectomia , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue , Ratos , Ratos Sprague-Dawley
9.
J Ethnopharmacol ; 278: 114289, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090908

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvianolic acid B (SalB) is a polyphenolic compound in Salvia miltiorrhiza Bunge ("Danshen"), which has been largely used in Traditional Chinese Medicine for the treatment of metabolic syndrome, obesity, diabetes, among others. AIM OF STUDY: This study was to investigate the effects of Salvianolic acid B (SalB) on mRNA, lncRNA and circRNA's expression profile in brown adipose tissue (BAT) of obese mice. MATERIALS AND METHODS: High-fat-diet induced obese C57BL/6J mice were treated with SalB (100 mg/kg/day) for 8 weeks. Then, BAT was harvested for RNA-Seq analysis. Differentially expressed mRNAs, lncRNAs and circRNAs were analyzed using the Illumina Hiseq 4000. Following this procedure, bioinformatic tools including Gene ontology (GO), KEGG pathway and lncRNA-mRNA co-network analysis were utilized. Finally, RT-qPCR was performed to validate the differentially expressed RNAs. RESULTS: Compared with control group, 2532 mRNAs, 774 lncRNAs and 25 circRNAs were differentially expressed in SalB group. Additionally, 40 upregulated and 109 downregulated gene-related pathways were identified in the SalB group. Among them, metabolic pathways showed the highest enrichment coefficient in upregulated genes. Moreover, 54 up-regulated and 626 down-regulated coding mRNAs associated with lncRNA-Hsd11b1 and lncRNA-Vmp1. CONCLUSIONS: SalB may play an anti-obesity role by adjusting the expression of mRNAs correlated with inflammatory response and energy metabolism through regulating the expression of lncRNA-Hsd11b1. The findings of this research provide new directions to study the mechanisms of SalB, and would open therapeutic avenues for the treatment of obesity.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Benzofuranos/farmacologia , Obesidade/tratamento farmacológico , Salvia miltiorrhiza/química , Tecido Adiposo Marrom/metabolismo , Animais , Benzofuranos/isolamento & purificação , Biologia Computacional , Dieta Hiperlipídica , Regulação para Baixo , Metabolismo Energético/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Regulação para Cima
10.
Phytother Res ; 35(1): 424-441, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32755017

RESUMO

Fructus Ligustri Lucidi (FLL) has been preclinically and clinically used to treat musculoskeletal diseases. However, whether and how FLL affect the canonical Wnt/ß-catenin signaling in the management of osteoporosis remains largely unknown. To this end, ovariectomized (OVX) rats and primary osteoblasts were administrated with FLL aqueous extract and medicated serum, respectively. Supplement of FLL to OVX rats maintains bone quality by attenuating the reduction in bone mineral density, strength and microstructure. The maintenance may be associated with upregulating the expression of insulin-like growth factor-1, osteoprotegerin, phospho (p)-low-density lipoprotein receptor-related protein 6, p-glycogen synthase kinase 3 beta (GSK3ß), ß-catenin, Runx2 and c-Myc, and downregulating the expressions of sclerostin (SOST), dickkopf-related protein 1 (DKK1), GSK3ß and p-ß-catenin in rat femurs and tibias. In addition, the medicated serum promotes osteoblastic bone formation through activation of Wnt/ß-catenin signaling via inhibition of DKK1 and SOST overexpression. Salidroside may be one of the active ingredients in FLL that are beneficial for bone homeostasis. In summary, our results suggest that FLL may preserve bone quality through induction of canonical Wnt/ß-catenin signaling via inhibition of DKK1 and SOST overexpression. And FLL may offer a new source of the DKK1 or SOST inhibitors in protection against osteoporosis.


Assuntos
Osso e Ossos/efeitos dos fármacos , Ligustrum/química , Osteoporose/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Alendronato , Animais , Densidade Óssea/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Frutas/química , Marcadores Genéticos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteoblastos/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Sprague-Dawley
11.
Aging (Albany NY) ; 11(21): 9348-9368, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31715585

RESUMO

Gut dysbiosis and oxidative stress may trigger senile osteoporosis. Fructus Ligustri Lucidi (FLL) has bone-preserving properties and affects the intestinal microecology. However, the mechanism of the anti-osteoporotic effect of FLL and its link to the gut microbiota remains to be elucidated. Here, we demonstrated that sustained exposure of ICR mice to D-galactose / sodium nitrite for 90 days causes aging-related osteoporosis and reduced cognitive performance. The aging phenotype is also characterized by increased oxidative stress in serum. This is likely triggered by abnormal changes in the gut microbiota population of Bifidobacterium and the ratio of Firmicutes/ Bacteroidetes that resulted in increased levels of flavin-containing monooxygenase-3 and trimethylamine-N-oxide (TMAO). Moreover, the increased oxidative stress further accelerated aging by increasing tumor necrosis factor-α levels in serum and reducing Sirtuin 6 (Sirt6) expression in long bones, which prompted nuclear factor kappa-B acetylation as well as over-expression and activation of cathepsin K. FLL-treated aging mice revealed a non-osteoporotic bone phenotype and an improvement on the cognitive function. The mechanism underlying these effects may be linked to the regulation of gut microbiota diversity, antioxidant activity, and the levels of TMAO and Sirt6. FLL may represent a potential source for identifying anti-senile osteoporotic drug candidates.


Assuntos
Osso e Ossos/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Ligustrum , Osteoporose/prevenção & controle , Extratos Vegetais/uso terapêutico , Envelhecimento/efeitos dos fármacos , Animais , Osso e Ossos/metabolismo , Catepsina K/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Galactose , Masculino , Metilaminas/sangue , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Osteoporose/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuínas/metabolismo , Nitrito de Sódio
12.
Phytomedicine ; 58: 152871, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851580

RESUMO

BACKGROUND: Salvia miltiorrhiza (SM), one of the frequently used herbs in traditional Chinese medicine (TCM), has now attracted rising interests for a possible alternative in the management of diabetes. This review is aimed to providing a comprehensive perspective of SM in phytochemical constituents, pharmacological activities against diabetes and its complications, and safety. METHODS: A comprehensive search of published literatures was conducted to locate original publications pertaining to SM and diabetes till the end of 2017 using PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science database. The main inquiry was used for the presence of the following keywords in various combinations in the titles and abstracts: Salvia miltiorrhiza, diabetes, obesity, phytochemistry, pharmacology, and safety. About 200 research papers and reviews were consulted. RESULTS: SM exhibited anti-diabetic activities by treating macro- and micro-vascular diseases in preclinical experiments and clinical trials through an improvement of redox homeostasis and inhibition of apoptosis and inflammation via the regulation of Wnt/ß-catenin, TSP-1/TGF-ß1/STAT3, JNK/PI3K/Akt, kinin B2 receptor-Akt-GSK-3ß, AMPKß/PGC-1α/Sirt3, Akt/AMPK, TXNIP/NLRP3, TGF-ß1/NF-κB, mineralocorticoid receptor/Na+/K+-ATPase, AGEs/RAGE, Nrf2/Keap1, CaMKKß/AMPK, AMPK/ACC, IRS-1/PI3K signaling pathways, and modulation of K+-Ca2+ channels, as well as influence of VEGF, NOS, AGEs, PPAR expression and hIAPP aggregation. The antidiabetic effects of this herb may be related to its TCM characters of improving blood circulation and reliving blood stasis. The main ingredients of SM included salvianolic acids and diterpenoid tanshinones, which have been well studied in the diabetic animals. Acute and subacute toxicity studies supported the notion that SM is well tolerated. CONCLUSION: SM may offer a new strategy for prevention and treatment of diabetes and its complications that stimulates extensive research into identifying potential anti-diabetic compounds and fractions as well as exploring the underlying mechanisms of this herb. Further scientific evidences are still required from well-designed preclinical experiments and clinical trials on its anti-diabetic effects and safety.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia , Salvia miltiorrhiza/química , Diabetes Mellitus/prevenção & controle , Humanos , Plantas Medicinais
13.
Chin J Integr Med ; 25(11): 853-860, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26142340

RESUMO

OBJECTIVE: To investigate apoptotic effects of berberine, a significant alkaloids component existing in Rhizoma coptidis, and its possible acting mechanism in insulinoma cells. METHODS: Different concentrations of berberine were used to treat mouse insulinoma (MIN6) cells for various period of time. The viability and apoptosis of the cells were analyzed using methylthiazolyldiphenvl-tetrazolium bromide assay, flow cytometry and enzyme-linked immuno sorbent assay. Changes in the relating pro- and anti-apoptosis proteins were detected by western-blotting. RESULTS: The half-maximal inhibitory concentration (IC50) of berberine was 5.7 µmol/L on MIN6 cells viability for 16 h. Berberine caused a 20% reduction (P<0.05) in cell number after only 4-h incubation; which reached 50% after 24 h (P<0.01). Berberine treatment for 16 h significantly increased the level of DNA fragmentation. The flow cytometry showed the apoptotic rate increased 2.9- and 4.6-fold after treating with berberine (5 µmol/L) for 8 and 16 h, while 3- and 8.7-fold after 10 µmol/L treatment for 8 and 16 h (P<0.01). Berberine treatment dramatically elevated the expression ratio of Bax to Bcl-2. Meanwhile, berberine notably increased the apoptosis-inducing factors and cytochrome C transforming from the mitochondria to the cytoplasm. Apoptotic protease-activating factor 1 (Apaf-1) was subsequently activated after cytochrome C release. Furthermore, caspase-3 and poly adenosine diphosphate-ribose polymerase were also activated to trigger apoptosis cascade. CONCLUSION: High concentration (5 and 10 µmol/L) of berberine could induce the apoptosis of MIN6 cells through cytochrome C/Apaf-1/caspase-3 and apoptosis inducing factor (AIF) pathway.


Assuntos
Apoptose/efeitos dos fármacos , Berberina/farmacologia , Insulinoma/patologia , Neoplasias Pancreáticas/patologia , Animais , Fator de Indução de Apoptose/metabolismo , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Insulinoma/metabolismo , Camundongos , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
14.
Phytother Res ; 32(12): 2487-2500, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306652

RESUMO

Although radix Salviae miltiorrhizae (RSM) is reported to exhibit the antiosteoporotic effect in preclinical study, the underlying mechanism is unclear. To this end, ovariectomized (OVX) rats were employed with administration of RSM (5 g/kg) for 14 weeks. The disturbed serum levels of alkaline phosphatase (ALP), osteoprotegerin (OPG), tartrate-resistant acid phosphatase, and receptor activator of nuclear factor-κB ligand (RANKL) in OVX rats were improved by RSM treatment. Furthermore, supplement of RSM to OVX rats resulted in an increase in femoral bone mineral density and bone strength as well as an improvement in bone microstructures. Moreover, the decreased expression of phosphor (p)-LRP6, insulin-like growth factor-1(IGF-1), ALP, and OPG, as well as increased expression of RANKL and cathepsin K in the tibias and femurs of OVX rats were shifted by RSM treatment. Additionally, RSM reversed the decreased ratio of p-glycogen synthase kinase 3ß (GSK3ß) to GSK3ß and increased ratio of p-ß-catenin to ß-catenin in OVX rats. Altogether, it is suggestive that RSM improves bone quantity and quality by favoring Wnt/ß-catenin and OPG/RANKL/cathepsin K signaling pathways in OVX rats thereby suggesting the potential of this herb to be a novel source of antiosteoporosis drugs.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Salvia miltiorrhiza/química , Animais , Osso e Ossos/ultraestrutura , Catepsina K/metabolismo , Feminino , Fêmur/efeitos dos fármacos , Fêmur/ultraestrutura , Resistência à Flexão/efeitos dos fármacos , NF-kappa B/metabolismo , Ovariectomia , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
15.
J Tradit Chin Med ; 38(4): 570-578, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32186082

RESUMO

OBJECTIVE: To observe the effect of Jiangtang Xiaoke (JTXK) granule on endoplasmic reticulum (ER) stress in high fat diet (HFD)-induced type 2 diabetes mellitus (T2DM) KK-Ay mice. METHODS: KK-Ay mice were fed with HFD to induce the T2DM model, while normal control C57BL/6J mice were given standard feed. Fasting blood glucose (FBG) in all mice was measured weekly and oral glucose tolerance tests (OGTTs) were performed at 4 and 10 weeks after start of treatment to determine glucose metabolism. Serum fasting insulin (FINS) and insulin sensitivity index (ISI) were measured to determine insulin sensitivity. mRNA expressions of eukaryotic initiation factor-2 alpha (eIF2¦Á), glucose regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and C/EBP homology protein (CHOP) were assessed by reverse transcription polymerase chain reaction and the protein expressions of p-eIF2¦Á, GRP78, and CHOP were assessed by Western blotting. RESULTS: JTXK granule significantly reduced FBG and free fatty acid levels and improved OGTT at the 120 min of the 10-week treatment in T2DM KK-Ay mice. FINS and HbAlc levels were reduced and insulin sensitivities were increased in KK-Ay diabetic mice, which were improved with the treatment of JTXK granule, especially at the 7 and 3.5 g/kg doses. JTXK granule at the 3.5 g/kg dose was most effective in reducing both gene and protein expressions of eIF2¦Á, GRP78, and CHOP. CONCLUSION: ER stress response is increased in T2DM KK-Ay mice. Treatment with JTXK granule attenuates glucose disorders, improves insulin sensitivity, and reduces serum FFA in T2DM KK-Ay mice. The mechanisms may be attributed to regulation of the signaling ER stress pathway via decreasing eIF2¦Á phosphorylation and suppressing eIF2¦Á- ATF4-CHOP activation.

16.
Molecules ; 22(9)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28872612

RESUMO

Background: Fructus Ligustri Lucidi (FLL) has now attracted increasing attention as an alternative medicine in the prevention and treatment of osteoporosis. This study aimed to provide a general review of traditional interpretation of the actions of FLL in osteoporosis, main phytochemical constituents, pharmacokinetics, pharmacology in bone improving effect, and safety. Materials and Methods: Several databases, including PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science were consulted to locate publications pertaining to FLL. The initial inquiry was conducted for the presence of the following keywords combinations in the abstracts: Fructus Ligustri Lucidi, osteoporosis, phytochemistry, pharmacokinetics, pharmacology, osteoblasts, osteoclasts, salidroside. About 150 research papers and reviews were consulted. Results: FLL is assumed to exhibit anti-osteoporotic effects by improving liver and kidney deficiencies and reducing lower back soreness in Traditional Chinese Medicine (TCM). The data from animal and cell experiments demonstrate that FLL is able to improve bone metabolism and bone quality in ovariectomized, growing, aged and diabetic rats through the regulation of PTH/FGF-23/1,25-(OH)2D3/CaSR, Nox4/ROS/NF-κB, and OPG/RANKL/cathepsin K signaling pathways. More than 100 individual compounds have been isolated from this plant. Oleanolic acid, ursolic acid, salidroside, and nuzhenide have been reported to exhibit the anti-osteoporosis effect. The pharmacokinetics data reveals that salidroside is one of the active constituents, and that tyrosol is hard to detect under physiological conditions. Acute and subacute toxicity studies show that FLL is well tolerated and presents no safety concerns. Conclusions: FLL provides a new option for the prevention and treatment of osteoporosis, which attracts rising interests in identifying potential anti-osteoporotic compounds and fractions from this plant. Further scientific evidences are expected from well-designed clinical trials on its bone protective effects and safety.


Assuntos
Frutas/química , Ligustrum/química , Osteoporose/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Fator de Crescimento de Fibroblastos 23 , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteoporose/patologia , Extratos Vegetais/química
17.
Cell Physiol Biochem ; 42(4): 1514-1525, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719892

RESUMO

BACKGROUND/AIMS: Obesity has become a major health concern with few effective medications. Cinnamaldehyde (CA) has been reported to exhibit anti-diabetic and anti-inflammatory properties. However, whether CA shows anti-obesity activity remains unknown. Therefore, the present study aimed to investigate the potential anti-obesity effects of CA on mice fed a high-fat diet (HFD) and to explore the possible mechanisms involved. METHODS: Male C57BL/6J mice fed an HFD for 12 weeks were supplemented with CA (40 mg/kg/day) via gavage for an additional 8 weeks. Mice fed a standard diet were used as normal controls. RESULTS: The results revealed that CA treatment decreased body weight, fat mass, food intake, and serum lipid, free fatty acid and leptin levels. CA administration also improved insulin sensitivity in HFD-induced obese mice. Additionally, CA inhibited the hypertrophy of adipose tissue and induced browning of white adipose tissue. Uncoupling protein 1 (UCP1) was expressed in white adipose tissue after the oral administration of CA. Furthermore, CA enhanced the expression of the peroxisome proliferator-activated receptor γ (PPARγ), PR domain-containing 16 (PRDM16) and PPARγ coactivator 1α (PGC-1α) proteins in both brown and white adipose tissues. CONCLUSIONS: The results suggest that CA exhibits therapeutic potency against obesity by inducing the browning of white adipose tissue in HFD-fed mice.


Assuntos
Acroleína/análogos & derivados , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Acroleína/farmacologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos não Esterificados/sangue , Regulação da Expressão Gênica , Resistência à Insulina , Leptina/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Obesidade/patologia , PPAR gama/genética , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
18.
Pharmacol Res ; 122: 78-89, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28559210

RESUMO

Cinnamaldehyde, one of the active components derived from Cinnamon, has been used as a natural flavorant and fragrance agent in kitchen and industry. Emerging studies have been performed over the past decades to evaluate its beneficial role in management of diabetes and its complications. This review highlights recent advances of cinnamaldehyde in its glucolipid lowering effects, its pharmacokinetics, and its safety by consulting the Pubmed, China Knowledge Resource Integrated, China Science and Technology Journal, National Science and Technology Library, Wanfang Data, and the Web of Science Databases. For the inquiries, keywords such as Cinnamon, cinnamaldehyde, property, synthesis, diabetes, obesity, pharmacokinetics, and safety were used in various combinations. Accumulating evidence supports the notion that cinnamaldehyde exhibits glucolipid lowering effects in diabetic animals by increasing glucose uptake and improving insulin sensitivity in adipose and skeletal muscle tissues, improving glycogen synthesis in liver, restoring pancreatic islets dysfunction, slowing gastric emptying rates, and improving diabetic renal and brain disorders. Cinnamaldehyde exerts these effects through its action on multiple signaling pathways, including PPARs, AMPK, PI3K/IRS-1, RBP4-GLUT4, and ERK/JNK/p38MAPK, TRPA1-ghrelin and Nrf2 pathways. In addition, cinnamaldehyde seems to regulate the activities of PTP1B and α-amylase. Furthermore, cinnamaldehyde has the potential of metalizing into cinnamyl alcohol and methyl cinnamate and cinnamic acid in the body. Finally, there is a potential toxicity concern about this compound. In summary, cinnamaldehyde supplementation is shown to improve glucose and lipid homeostasis in diabetic animals, which may provide a new option for diabetic intervention. To this end, further scientific evidences are required from clinical trials on its glucose regulating effects and safety.


Assuntos
Acroleína/análogos & derivados , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Acroleína/química , Acroleína/farmacocinética , Acroleína/farmacologia , Acroleína/uso terapêutico , Animais , Cinnamomum zeylanicum/química , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
PLoS One ; 12(1): e0168980, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28045971

RESUMO

Jiang Tang Xiao Ke (JTXK) granule, a Chinese herbal formula, has been used clinically to treat type 2 diabetes (T2DM) for decades. Our previous studies showed that JTXK granule exhibited anti-diabetic and anti-oxidative functions in experimental diabetic rats induced by a high fat diet and streptozotocin. However, the underlying mechanisms remain poorly understood. Herein, we aimed to investigate the therapeutic effect of JTXK granule on T2DM KKAy mice and the possible associations with skeletal muscle in the current study. Our results showed that JTXK granule significantly reduced food intake and body weight in T2DM KKAy mice. JTXK granule treatment also decreased the blood glucose and HbA1c levels and increased the insulin sensitivity in a time-dependent manner. Additionally, it ameliorated hyperlipidaemia and induced a lower free fatty acid level, displaying an effect on disorders of lipid metabolism. JTXK granule significantly increased the expression of insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB/Akt) and glucose transporter 4 (Glut4) and decreased the expression of glycogen synthase kinase 3ß (GSK3ß). We concluded that JTXK granule is an effective drug for T2DM through regulating the PI3K/Akt signalling pathway in skeletal muscle.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipoglicemiantes/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Medicamentos de Ervas Chinesas/farmacologia , Ácidos Graxos/sangue , Comportamento Alimentar/efeitos dos fármacos , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/farmacologia , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
J Ethnopharmacol ; 198: 351-362, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28111216

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Emerging clinical usage and pharmacological effects have been achieved in using Rehmanniae Radix either singly or in combination with other herbs to treat skeletal diseases in traditional Chinese medicine (TCM) in the recent years. This study is aimed to provide a comprehensive review about the historical TCM interpretation of the action of Rehmanniae Radix in osteoporosis, its usage in clinical trials and osteoporotic models, its main phytochemical constituents, and its pharmacokinetics. MATERIALS AND METHODS: Several databases included PubMed, China Knowledge Resource Integrated Database, China Science and Technology Journal Database, National Science and Technology Library and the Web of Science Database were consulted to locate the publications pertaining to Rehmanniae Radix. The initial inquiry was conducted for the presence of the following terms combinations in the abstracts: Rehmanniae Radix, Dihuang, phytochemistry, pharmacokinetics, osteoporosis, bone, osteoclast and osteoblast. About 330 research papers and reviews were consulted. RESULTS: In TCM, Rehmanniae Radix exerts the anti-osteoporotic effect via regulating the functions of kidney and liver as well as improving blood circulation. 107 clinical trials are identified that used Rehmanniae Radix in combination with other herbs to treat post-menopausal, senile and secondary osteoporosis. Most of the clinical trials are characterized by high efficacy and no obvious adverse effects. However, the efficacies of these clinical trials are limited because of small patient sample size, short treatment duration and poor clinical design. In addition, TCM herbs under the clinical study are not clear because of a lack of standardization and authentication. The pharmacokinetics data demonstrate that the ingredients of Rehmanniae Radix are widely distributed after administration, and that catalpol and ajugol as well as acetoside are supposed to be the active constituents. More than 140 individual compounds have been currently isolated from this plant and reported to show pleiotropic effects on various diseases. Rehmanniae Radix displays bone protecting features in the osteoporosis models via the delicate balance between osteoclastogenesis and osteoblastogenesis through single herb extracts and its isolated compounds. CONCLUSIONS: The successful inclusion of Rehmanniae Radix in clinical trials and preclinical studies for the management of osteoporosis has attracted rising attentions for identifying potential anti-osteoporotic candidates from this plant and clinical existing TCM formulas, which will further speed up anti-osteoporosis drug discovery processes. Properly designed and well controlled prospective studies are still needed to further demonstrate bone protective actions and safe use of this herb and its ingredients.


Assuntos
Osteoporose/tratamento farmacológico , Extratos Vegetais/farmacologia , Rehmannia/química , Animais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Medicina Tradicional Chinesa/métodos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Fitoterapia/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA