Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(16): e2300015120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036983

RESUMO

Anorexia nervosa (AN) is a psychiatric illness with the highest mortality. Current treatment options have been limited to psychotherapy and nutritional support, with low efficacy and high relapse rates. Hypothalamic AgRP (agouti-related peptide) neurons that coexpress AGRP and neuropeptide Y (NPY) play a critical role in driving feeding while also modulating other complex behaviors. We have previously reported that genetic ablation of Tet3, which encodes a member of the TET family dioxygenases, specifically in AgRP neurons in mice, activates these neurons and increases the expression of AGRP, NPY, and the vesicular GABA transporter (VGAT), leading to hyperphagia and anxiolytic effects. Bobcat339 is a synthetic small molecule predicted to bind to the catalytic pockets of TET proteins. Here, we report that Bobcat339 is effective in mitigating AN and anxiety/depressive-like behaviors using a well-established mouse model of activity-based anorexia (ABA). We show that treating mice with Bobcat339 decreases TET3 expression in AgRP neurons and activates these neurons leading to increased feeding, decreased compulsive running, and diminished lethality in the ABA model. Mechanistically, Bobcat339 induces TET3 protein degradation while simultaneously stimulating the expression of AGRP, NPY, and VGAT in a TET3-dependent manner both in mouse and human neuronal cells, demonstrating a conserved, previously unsuspected mode of action of Bobcat339. Our findings suggest that Bobcat339 may potentially be a therapeutic for anorexia nervosa and stress-related disorders.


Assuntos
Anorexia Nervosa , Dioxigenases , Camundongos , Humanos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Anorexia Nervosa/tratamento farmacológico , Anorexia Nervosa/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo , Modelos Animais , Dioxigenases/metabolismo
2.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189793

RESUMO

The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.


Assuntos
Ansiolíticos , Dioxigenases , 5-Metilcitosina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Ansiolíticos/farmacologia , Cromatina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
3.
Mol Psychiatry ; 27(10): 3951-3960, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35906488

RESUMO

Hypothalamic agouti-related peptide and neuropeptide Y-expressing (AgRP) neurons have a critical role in both feeding and non-feeding behaviors of newborn, adolescent, and adult mice, suggesting their broad modulatory impact on brain functions. Here we show that constitutive impairment of AgRP neurons or their peripubertal chemogenetic inhibition resulted in both a numerical and functional reduction of neurons in the medial prefrontal cortex (mPFC) of mice. These changes were accompanied by alteration of oscillatory network activity in mPFC, impaired sensorimotor gating, and altered ambulatory behavior that could be reversed by the administration of clozapine, a non-selective dopamine receptor antagonist. The observed AgRP effects are transduced to mPFC in part via dopaminergic neurons in the ventral tegmental area and may also be conveyed by medial thalamic neurons. Our results unmasked a previously unsuspected role for hypothalamic AgRP neurons in control of neuronal pathways that regulate higher-order brain functions during development and in adulthood.


Assuntos
Hipotálamo , Neuropeptídeo Y , Animais , Camundongos , Proteína Relacionada com Agouti/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hipotálamo/metabolismo , Neuropeptídeo Y/metabolismo , Córtex Pré-Frontal/metabolismo
4.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33848272

RESUMO

Hypothalamic feeding circuits have been identified as having innate synaptic plasticity, mediating adaption to the changing metabolic milieu by controlling responses to feeding and obesity. However, less is known about the regulatory principles underlying the dynamic changes in agouti-related protein (AgRP) perikarya, a region crucial for gating of neural excitation and, hence, feeding. Here we show that AgRP neurons activated by food deprivation, ghrelin administration, or chemogenetics decreased their own inhibitory tone while triggering mitochondrial adaptations in neighboring astrocytes. We found that it was the inhibitory neurotransmitter GABA released by AgRP neurons that evoked this astrocytic response; this in turn resulted in increased glial ensheetment of AgRP perikarya by glial processes and increased excitability of AgRP neurons. We also identified astrocyte-derived prostaglandin E2, which directly activated - via EP2 receptors - AgRP neurons. Taken together, these observations unmasked a feed-forward, self-exciting loop in AgRP neuronal control mediated by astrocytes, a mechanism directly relevant for hunger, feeding, and overfeeding.


Assuntos
Proteína Relacionada com Agouti , Astrócitos/metabolismo , Fome , Hipotálamo/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Prostaglandina E Subtipo EP2/metabolismo
5.
J Clin Invest ; 130(9): 4985-4998, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516139

RESUMO

The brain has evolved in an environment where food sources are scarce, and foraging for food is one of the major challenges for survival of the individual and species. Basic and clinical studies show that obesity or overnutrition leads to overwhelming changes in the brain in animals and humans. However, the exact mechanisms underlying the consequences of excessive energy intake are not well understood. Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the lateral/perifonical hypothalamus (LH) are critical for homeostatic regulation, reward seeking, stress response, and cognitive functions. In this study, we examined adaptations in Hcrt cells regulating behavioral responses to salient stimuli in diet-induced obese mice. Our results demonstrated changes in primary cilia, synaptic transmission and plasticity, cellular responses to neurotransmitters necessary for reward seeking, and stress responses in Hcrt neurons from obese mice. Activities of neuronal networks in the LH and hippocampus were impaired as a result of decreased hypocretinergic function. The weakened Hcrt system decreased reward seeking while altering responses to acute stress (stress-coping strategy), which were reversed by selectively activating Hcrt cells with chemogenetics. Taken together, our data suggest that a deficiency in Hcrt signaling may be a common cause of behavioral changes (such as lowered arousal, weakened reward seeking, and altered stress response) in obese animals.


Assuntos
Comportamento Alimentar , Hipotálamo , Rede Nervosa , Neurônios , Obesidade , Orexinas , Animais , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Orexinas/genética , Orexinas/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia
6.
Diabetes ; 66(6): 1511-1520, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28292966

RESUMO

Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders.


Assuntos
Endotélio/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Comportamento Animal , Western Blotting , Metabolismo Energético , Privação de Alimentos , Técnicas de Silenciamento de Genes , Hiperfagia , Hipotálamo/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real
7.
Nature ; 519(7541): 45-50, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25707796

RESUMO

Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide ß-endorphin. CB1R activation selectively increases ß-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids.


Assuntos
Canabinoides/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Hipotálamo/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Naloxona/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Resposta de Saciedade/efeitos dos fármacos , Resposta de Saciedade/fisiologia , Proteína Desacopladora 2 , alfa-MSH/metabolismo , beta-Endorfina/metabolismo
8.
J Physiol ; 591(7): 1951-66, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23318871

RESUMO

Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans.


Assuntos
Cocaína/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/fisiologia , Sinapses/efeitos dos fármacos , Animais , Condicionamento Psicológico , Potenciais Pós-Sinápticos Excitadores , Hipotálamo/fisiologia , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Orexinas , Sinapses/fisiologia
9.
Nat Med ; 17(9): 1121-7, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21873987

RESUMO

Previous studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice. High-fat feeding resulted in proliferation of peroxisomes and elevated peroxisome proliferator-activated receptor γ (PPAR-γ) mRNA levels within the hypothalamus. The proliferation of peroxisomes in POMC neurons induced by the PPAR-γ agonist rosiglitazone decreased ROS levels and increased food intake in lean mice on high-fat diet. Conversely, the suppression of peroxisome proliferation by the PPAR antagonist GW9662 increased ROS concentrations and c-fos expression in POMC neurons. Also, it reversed high-fat feeding-triggered elevated NPY/AgRP and low POMC neuronal firing, and resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and phosphorylated signal transducer and activator of transcription 3 (pStat3) expression in POMC neurons and reduced feeding of DIO mice. These observations unmask a previously unknown hypothalamic cellular process associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , PPAR gama/metabolismo , Peroxissomos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Relacionada com Agouti/metabolismo , Anilidas/farmacologia , Animais , Linhagem Celular , Ingestão de Alimentos/fisiologia , Eletrofisiologia , Proteínas de Fluorescência Verde , Hipotálamo/citologia , Camundongos , Camundongos Obesos , Neuropeptídeo Y/metabolismo , PPAR gama/antagonistas & inibidores , Reação em Cadeia da Polimerase , Pró-Opiomelanocortina/metabolismo
10.
Cell ; 138(5): 976-89, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737523

RESUMO

Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Assuntos
Apetite , Densidade Óssea , Metabolismo Energético , Leptina/metabolismo , Serotonina/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo , Transdução de Sinais
11.
J Clin Invest ; 119(8): 2291-303, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19620781

RESUMO

The anorexigenic neuromodulator alpha-melanocyte-stimulating hormone (alpha-MSH; referred to here as alpha-MSH1-13) undergoes extensive posttranslational processing, and its in vivo activity is short lived due to rapid inactivation. The enzymatic control of alpha-MSH1-13 maturation and inactivation is incompletely understood. Here we have provided insight into alpha-MSH1-13 inactivation through the generation and analysis of a subcongenic mouse strain with reduced body fat compared with controls. Using positional cloning, we identified a maximum of 6 coding genes, including that encoding prolylcarboxypeptidase (PRCP), in the donor region. Real-time PCR revealed a marked genotype effect on Prcp mRNA expression in brain tissue. Biochemical studies using recombinant PRCP demonstrated that PRCP removes the C-terminal amino acid of alpha-MSH1-13, producing alpha-MSH1-12, which is not neuroactive. We found that Prcp was expressed in the hypothalamus in neuronal populations that send efferents to areas where alpha-MSH1-13 is released from axon terminals. The inhibition of PRCP activity by small molecule protease inhibitors administered peripherally or centrally decreased food intake in both wild-type and obese mice. Furthermore, Prcp-null mice had elevated levels of alpha-MSH1-13 in the hypothalamus and were leaner and shorter than the wild-type controls on a regular chow diet; they were also resistant to high-fat diet-induced obesity. Our results suggest that PRCP is an important component of melanocortin signaling and weight maintenance via control of active alpha-MSH1-13 levels.


Assuntos
Carboxipeptidases/fisiologia , Ingestão de Alimentos , alfa-MSH/antagonistas & inibidores , Animais , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/genética , Ingestão de Alimentos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Hipotálamo/metabolismo , Masculino , Hormônios Estimuladores de Melanócitos/metabolismo , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/etiologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Reação em Cadeia da Polimerase , Pirimidinas/farmacologia , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptores de Melanocortina/fisiologia , alfa-MSH/fisiologia
12.
Peptides ; 30(11): 2025-30, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19463877

RESUMO

Melanin concentrating hormone (MCH) has been implicated in many brain functions and behaviors essential to the survival of animals. The hypothalamus is one of the primary targets where MCH-containing nerve fibers and MCH receptors are extensively expressed and its actions in the brain are exerted. Since the identification of MCH receptors as orphan G protein coupled receptors, the cellular effects of MCH have been revealed in many non-neuronal expression systems (including Xenopus oocytes and cell lines), however, the mechanism by which MCH modulates the activity in the neuronal circuitry of the brain is still under investigation. This review summarizes our current knowledge of electrophysiological effects of MCH on neurons in the hypothalamus, particularly in the lateral hypothalamus. Generally, MCH exerts inhibitory effects on neurons in this structure and may serve as a homeostatic regulator in the lateral hypothalamic area. Given the contrast between the limited data on cellular functions of MCH in the hypothalamus versus a fast growing body of evidence on the vital role of MCH in animal behavior, further investigations of the former are warranted.


Assuntos
Hormônios Hipotalâmicos/farmacologia , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Melaninas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Hormônios Hipofisários/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Eletrofisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Receptores do Hormônio Hipofisário/genética , Receptores do Hormônio Hipofisário/fisiologia
13.
Nature ; 454(7206): 846-51, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18668043

RESUMO

The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Grelina/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Canais Iônicos/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/genética , Fosforilação/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteína Desacopladora 2
14.
J Clin Invest ; 117(12): 4022-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18060037

RESUMO

Sleep is a natural process that preserves energy, facilitates development, and restores the nervous system in higher animals. Sleep loss resulting from physiological and pathological conditions exerts tremendous pressure on neuronal circuitry responsible for sleep-wake regulation. It is not yet clear how acute and chronic sleep loss modify neuronal activities and lead to adaptive changes in animals. Here, we show that acute and chronic prolonged wakefulness in mice induced by modafinil treatment produced long-term potentiation (LTP) of glutamatergic synapses on hypocretin/orexin neurons in the lateral hypothalamus, a well-established arousal/wake-promoting center. A similar potentiation of synaptic strength at glutamatergic synapses on hypocretin/orexin neurons was also seen when mice were sleep deprived for 4 hours by gentle handling. Blockade of dopamine D1 receptors attenuated prolonged wakefulness and synaptic plasticity in these neurons, suggesting that modafinil functions through activation of the dopamine system. Also, activation of the cAMP pathway was not able to further induce LTP at glutamatergic synapses in brain slices from mice treated with modafinil. These results indicate that synaptic plasticity due to prolonged wakefulness occurs in circuits responsible for arousal and may contribute to changes in the brain and body of animals experiencing sleep loss.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Plasticidade Neuronal , Neurônios/metabolismo , Neuropeptídeos , Privação do Sono/metabolismo , Sinapses/metabolismo , Vigília , Animais , Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/farmacologia , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/farmacologia , AMP Cíclico/metabolismo , Dopamina/metabolismo , Feminino , Hipotálamo/metabolismo , Hipotálamo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Modafinila , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/patologia , Neuropeptídeos/metabolismo , Orexinas , Receptores de Dopamina D1/metabolismo , Privação do Sono/induzido quimicamente , Privação do Sono/patologia , Sinapses/patologia , Vigília/efeitos dos fármacos
15.
Cell Metab ; 5(1): 21-33, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17189204

RESUMO

The active thyroid hormone, triiodothyronine (T3), regulates mitochondrial uncoupling protein activity and related thermogenesis in peripheral tissues. Type 2 deiodinase (DII), an enzyme that catalyzes active thyroid hormone production, and mitochondrial uncoupling protein 2 (UCP2) are also present in the hypothalamic arcuate nucleus, where their interaction and physiological significance have not been explored. Here, we report that DII-producing glial cells are in direct apposition to neurons coexpressing neuropeptide Y (NPY), agouti-related protein (AgRP), and UCP2. Fasting increased DII activity and local thyroid hormone production in the arcuate nucleus in parallel with increased GDP-regulated UCP2-dependent mitochondrial uncoupling. Fasting-induced T3-mediated UCP2 activation resulted in mitochondrial proliferation in NPY/AgRP neurons, an event that was critical for increased excitability of these orexigenic neurons and consequent rebound feeding following food deprivation. These results reveal a physiological role for a thyroid-hormone-regulated mitochondrial uncoupling in hypothalamic neuronal networks.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Jejum , Comportamento Alimentar , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Termogênese , Tri-Iodotironina/metabolismo , Proteína Relacionada com Agouti , Animais , Núcleo Arqueado do Hipotálamo/citologia , Ingestão de Alimentos , Proteínas de Fluorescência Verde , Guanosina Difosfato/metabolismo , Hipotálamo/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Iodeto Peroxidase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Neuropeptídeo Y/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteína Desacopladora 2 , Iodotironina Desiodinase Tipo II
16.
Cell Metab ; 1(4): 279-86, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16054072

RESUMO

The lateral hypothalamic hypocretin (also called orexin) neurons have emerged as instrumental in triggering arousal and regulating energy metabolism. The lack of hypocretin signaling is the cause of narcolepsy while elevated hypocretin levels induce arousal, elevated food intake, and adiposity. Here, we report an unorthodox synaptic organization on the hypocretin neurons in which excitatory synaptic currents and asymmetric synapses exert control on the cell bodies of these long-projective neurons with minimal inhibitory input. Overnight food deprivation promotes the formation of more excitatory synapses and synaptic currents onto hypocretin cells; this is reversed by re-feeding and blocked by leptin administration. This unique wiring and acute stress-induced plasticity of the hypocretin neurons correlates well with their being involved in the control of arousal and alertness that are so vital to survival, but this circuitry may also be an underlying cause of insomnia and associated metabolic disturbances, including obesity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neuropeptídeos/fisiologia , Obesidade/metabolismo , Distúrbios do Início e da Manutenção do Sono/metabolismo , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Animais , Dendritos/metabolismo , Hipotálamo/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Orexinas , Técnicas de Patch-Clamp , Sinapses/metabolismo
17.
Neuron ; 36(6): 1169-81, 2002 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-12495630

RESUMO

Neurons that release hypocretin/orexin modulate sleep, arousal, and energy homeostasis; the absence of hypocretin results in narcolepsy. Here we present data on the physiological characteristics of these cells, identified with GFP in transgenic mouse brain slices. Hypocretin-1 and -2 depolarized hypocretin neurons by 15mV and evoked an increase in spike frequency (+366% from a 1-3 Hz baseline). The mechanism for this appears to be hypocretin-mediated excitation of local glutamatergic neurons that regulate hypocretin neuron activity, in part by presynaptic facilitation of glutamate release. This represents a possible mechanism for orchestrating the output of the diffuse hypothalamic arousal system. No direct effect of hypocretin on membrane properties of hypocretin cells was detected. Norepinephrine and serotonin, transmitters of other arousal systems, decreased spike frequency and evoked outward currents, whereas acetylcholine and histamine had little effect.


Assuntos
Potenciais de Ação/fisiologia , Nível de Alerta/fisiologia , Proteínas de Transporte/metabolismo , Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Vias Neurais/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Nível de Alerta/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Retroalimentação/efeitos dos fármacos , Retroalimentação/fisiologia , Agonistas GABAérgicos/farmacologia , Genes Reporter/genética , Proteínas de Fluorescência Verde , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Imuno-Histoquímica , Proteínas Luminescentes , Camundongos , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Orexinas , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
18.
J Neurophysiol ; 88(2): 1005-15, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12163549

RESUMO

During early neuronal development, GABA functions as an excitatory neurotransmitter, triggering membrane depolarization, action potentials, and the opening of plasma membrane Ca(2+) channels. These excitatory actions of GABA lead to a number of changes in neuronal structure and function. Although the effects of GABA on membrane biophysics during early development have been well documented, little work has been done to examine the possible mechanisms underlying GABA-regulated plastic changes in the developing brain. This study focuses on GABA-regulated kinase activity and transcriptional control. We utilized a combination of Western blotting and immunocytochemical techniques to examine two potential downstream pathways regulated by GABA excitation: the p42/44 mitogen-activated protein kinase (MAPK) cascade and the transcription factor cyclic AMP response element binding protein (CREB). During early development of cultured hypothalamic neurons (5 days in vitro), stimulation with GABA triggered activation of the MAPK cascade and phosphorylation of CREB at Ser 133. These effects were mediated by the GABA(A) receptor, since administration of the GABA(A) receptor-specific agonist muscimol (50 microM) triggered pathway activation, and pretreatment with the GABA(A)-receptor specific antagonist bicuculline (20 microM) blocked pathway activation. Immunocytochemistry revealed a spatial and temporal correlation between activation of the MAPK cascade and CREB phosphorylation. Pretreatment with the MAPK/ERK kinase (MEK) inhibitor U0126 (10 microM) attenuated CREB phosphorylation, indicating that the MAPK pathway regulates that activation state of CREB. In contrast to the excitatory effects observed during early development, in more mature neurons, GABA functions as an inhibitory transmitter. Consistent with this observation, GABA(A) receptor activation did not stimulate MAPK cascade activation or CREB phosphorylation in mature cultures (18 days in vitro). To determine whether GABA(A) receptor activation during early development stimulates gene expression, we examined the inducible expression of the neurotrophin brain-derived neurotrophic factor (BDNF). Both GABA and muscimol stimulated BDNF expression, and pretreatment with U0126 attenuated GABA-induced BDNF expression. Whole cell electrophysiological recording was used to assess the effects of BDNF on GABA release. BDNF (100 ng/ml) dramatically increased the frequency of excitatory GABAergic spontaneous postsynaptic currents. Together, these data suggest a positive excitatory feedback loop between GABA and BDNF expression during early development, where GABA facilitates BDNF expression, and BDNF facilitates the synaptic release of GABA. Signaling via the MAPK cascade and the transcription factor CREB appear to play a substantial role in this process.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Bicuculina/farmacologia , Western Blotting , Cálcio/metabolismo , Técnicas de Cultura de Células , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Hipotálamo/citologia , Imuno-Histoquímica , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Muscimol/farmacologia , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Transdução de Sinais
19.
J Physiol ; 542(Pt 1): 273-86, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12096069

RESUMO

Melanin-concentrating hormone (MCH), a cyclic 19-amino-acid peptide, is synthesized exclusively by neurons in the lateral hypothalamic (LH) area. It is involved in a number of brain functions and recently has raised interest because of its role in energy homeostasis. MCH axons and receptors are found throughout the brain. Previous reports set the foundation for understanding the cellular actions of MCH by using non-neuronal cells transfected with the MCH receptor gene; these cells exhibited an increase in cytoplasmic calcium in response to MCH, suggesting an excitatory action for the peptide. In the study presented here, we have used whole-cell recording in 117 neurons from LH cultures and brain slices to examine the actions of MCH. MCH decreased the amplitude of voltage-dependent calcium currents in almost all tested neurons. The inhibition desensitized rapidly (18 s to half maximum at 100 nM concentration) and was dose-dependent (IC(50) = 7.8 nM) when activated with a pulse from -80 mV to 0 mV. A priori activation of G-proteins with GTPgammaS completely eliminated the MCH-induced effect at low MCH concentrations and reduced the MCH-induced effect at high MCH concentrations. Inhibition of G-proteins with pertussis toxin (PTX) blocked the MCH-induced inhibitory effect at high MCH concentrations. Pre-pulse depolarization resulted in an attenuation of the MCH-induced inhibition of calcium currents in most neurons. These data suggest that MCH exerts an inhibitory effect on calcium currents via PTX-sensitive G-protein pathways, probably the G(i)/G(o) pathway, in LH neurons. L-, N- and P/Q-type calcium channels were identified in LH neurons, with L- and N-type channels accounting for most of the voltage-activated current (about 40 % each); MCH attenuated each of the three types (mean 50 % depression), with the greatest inhibition found for N-type currents. In contrast to previous data on non-neuronal cells showing an MHC-evoked increase in calcium, our data suggest that the reverse occurs in LH neurons. The attenuation of calcium currents is consistent with an inhibitory action for the peptide in neurons.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo N/efeitos dos fármacos , Canais de Cálcio Tipo P/efeitos dos fármacos , Hormônios Hipotalâmicos/farmacologia , Hipotálamo/metabolismo , Melaninas/farmacologia , Neurônios/metabolismo , Hormônios Hipofisários/farmacologia , Animais , Células Cultivadas , Feminino , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA