Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 239: 115919, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134707

RESUMO

Testicular dysfunction is distinguished by a deficiency in testosterone levels, which can be attributed to the occurrence of oxidative stress injury in Leydig cells. The empirical prescription known as Bushen Zhuanggu Tang, developed by a highly experienced traditional Chinese medicine practitioner with six decades of clinical expertize, aligns with the traditional Chinese medicine principle of "kidney governing bone". Researchers have demonstrated that the administration of BSZGT can effectively enhance testosterone production. The objective of this study is to investigate the potential anti-testicular dysfunction effects of BSZGT and elucidate its underlying mechanism in an in vitro setting. Specifically, the impact of oxidative stress induced by H2O2 on the activity and testosterone levels of Leydig cells (TM3) was examined. Furthermore, the utilization of UPLC-QE-Qrbitrap-MS enabled the identification of the involvement of BSZGT in various metabolic pathways, including arginine biosynthesis, amino acyl-tRNA biosynthesis, Alanine, aspartate and glutamine metabolism, and Citrate Cycle, through the modulation of 25 distinct metabolites. Additionally, a network pharmacological analysis was conducted to investigate the pivotal protein targets associated with the therapeutic effects of BSZGT. The findings demonstrate the identification of six key proteins (CYP19A1, CYP1B1, ALOX5, ARG1, XDH, and MPO) that play a significant role in augmenting testicular function through their involvement in the ovarian steroid production pathway. In summary, our study presents a comprehensive research methodology that combines cell metabonomics and network pharmacology to enhance the discovery of new therapeutic agents for TD.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Masculino , Humanos , Peróxido de Hidrogênio , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica/métodos , Testosterona
2.
Artigo em Inglês | MEDLINE | ID: mdl-38155401

RESUMO

BACKGROUND: Asthma is a chronic inflammatory disease of the airways that seriously endangers human health. Belamcanda chinensis (BC), a traditional Chinese medicine, has been used to counteract asthma as it has been shown to possess anti-inflammatory and regulatory immunity properties. OBJECTIVE: The study aimed to investigate the mechanisms of action of BC in the treatment of asthma; a "dose-effect weighted coefficient" network pharmacology method was established to predict potential active compounds. METHODS: Information on the components and content of BC was obtained by UPLC-QEOrbitrap- MS spectrometry. Based on BC content, oral bioavailability, and molecular docking binding energy, dose-effect weighting coefficients were constructed. With the degree greater than average as the index, a protein-protein interaction (PPI) database was used to obtain the core key targets for asthma under dose-effect weighting. GO function and KEGG pathway analyses of the core targets were performed using DAVID software. Finally, MTT and ELISA assays were used to assess the effects of active components on 16HBE cell proliferation. RESULTS: The experimental results using the 16HBE model demonstrated BC to have a potential protective effect on asthma. Network pharmacology showed SYK, AKT1, and ALOX5 to be the main key targets, and Fc epsilon RI as the promising signaling pathway. Eight components, such as tectoridin, mangiferin, luteolin, and isovitexin were the main active compounds, Finally, we analyzed the LPS-induced 16HBE proliferation of each active ingredient. Based on the activity verification study, all five predicted components promoted the proliferation of 16HBE cells. These five compounds can be used as potential quality markers for asthma. CONCLUSION: This study provides a virtual and practical method for the simple and rapid screening of active ingredients in natural products.

3.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558193

RESUMO

The neuroprotective properties of ginsenosides have been found to reverse the neurological damage caused by oxidation in many neurodegenerative diseases. However, the distribution of ginsenosides in different tissues of the main root, which was regarded as the primary medicinal portion in clinical practice was different, the specific parts and specific components against neural oxidative damage were not clear. The present study aims to screen and determine the potential compounds in different parts of the main root in ginseng. Comparison of the protective effects in the main root, phloem and xylem of ginseng on hydrogen peroxide-induced cell death of SH-SY5Y neurons was investigated. UPLC-Q-Exactive-MS/MS was used to quickly and comprehensively characterize the chemical compositions of the active parts. Network pharmacology combined with a molecular docking approach was employed to virtually screen for disease-related targets and potential active compounds. By comparing the changes before and after Content-Effect weighting, the compounds with stronger anti-nerve oxidative damage activity were screened out more accurately. Finally, the activity of the selected monomer components was verified. The results suggested that the phloem of ginseng was the most effective part. There were 19 effective compounds and 14 core targets, and enriched signaling pathway and biological functions were predicted. After Content-Effect weighting, compounds Ginsenosides F1, Ginsenosides Rf, Ginsenosides Rg1 and Ginsenosides Rd were screened out as potential active compounds against neural oxidative damage. The activity verification study indicated that all four predicted ginsenosides were effective in protecting SH-SY5Y cells from oxidative injury. The four compounds can be further investigated as potential lead compounds for neurodegenerative diseases. This also provides a combined virtual and practical method for the simple and rapid screening of active ingredients in natural products.


Assuntos
Ginsenosídeos , Neuroblastoma , Panax , Humanos , Espectrometria de Massas em Tandem/métodos , Ginsenosídeos/química , Panax/química , Simulação de Acoplamento Molecular , Floema/metabolismo , Estresse Oxidativo , Cromatografia Líquida de Alta Pressão/métodos
4.
Molecules ; 24(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671698

RESUMO

Fructus Gardeniae (FG) is a common Chinese medicine and food. However, the toxicity of FG has drawn increasing concern, especially its hepatotoxicity. The purpose of this study was to screen the hepatotoxic components of FG and evaluate their effects on rat liver BRL-3A cells. The chemical composition of FG was determined by HPLC-ESI-MS. CCK-8 assay was used to evaluate the cytotoxicity of ten chemical components from FG, and then the toxic components with significant inhibitory activity were selected for further study. The results showed that geniposide, genipin, genipin-1-gentiobioside, gardenoside, and shanzhiside all suppress cells viability. Apoptosis assays further indicated that geniposide and its metabolite genipin are the main hepatotoxic components of FG. Pretreatment of cells with geniposide or genipin increased the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). The activities of superoxide dismutase (SOD) and glutathione (GSH) were decreased, while the malondialdehyde (MDA) level was increased. The cell contents of tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) were also increased. Molecular docking simulations were used to investigate the mechanism of FG-induced hepatotoxicity, revealing that geniposide and genipin bind strongly to the pro-inflammatory factor TNFR1 receptor of the NF-κB and MAPK signaling pathways. The obtained results strongly indicate that the hepatotoxicity of FG is caused by iridoids compounds. Genipin had the most significant hepatotoxic effect. These toxic substances destroy the cell antioxidant defense system, increasing inflammatory injury to the liver cells and leading to apoptosis and even necrosis. Thus, this study lays a foundation for toxicology research into FG and its rational application.


Assuntos
Gardenia/química , Fígado/patologia , Compostos Fitoquímicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Inflamação/patologia , Iridoides/farmacologia , Fígado/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Padrões de Referência
5.
Molecules ; 24(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163647

RESUMO

Lepidium meyenii is now widely consumed as a functional food and medicinal product, which is known as an enhancer of reproductive health. However, the specific chemical composition and mechanism of action for improving sexual function are unclear. The present study aims at screening and determining the potential compounds, which promote mouse leydig cells (TM3) proliferation. The partial least squares analysis (PLS) was employed to reveal the correlation between common peaks of high performance liquid chromatography (HPLC) fingerprint of L. meyenii and the proliferation activity of TM3. The results suggested that three compounds had good activities on the proliferation of TM3 and promoting testosterone secretion, there were N-benzyl-hexadecanamide, N-benzyl-(9z,12z)-octadecadienamide and N-benzyl-(9z,12z,15z)-octadecatrienamide which might be the potential bioactive markers related to the enhancing sexual ability functions of L. meyenii. The first step in testosterone synthesis is the transport of cholesterol into the mitochondria, and the homeostasis of mitochondrial function is related to cyclophilin D (CypD). In order to expound how bioactive ingredients lead to promoting testosterone secretion, a molecular docking simulation was used for further illustration in the active sites and binding degree of the ligands on CypD. The results indicated there was a positive correlation between the binding energy absolute value and testosterone secretion activity. In addition, in this study it also provided the reference for a simple, quick method to screen the promoting leydig cell proliferation active components in traditional Chinese medicine (TCM).


Assuntos
Lepidium/química , Células Intersticiais do Testículo/citologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Análise dos Mínimos Quadrados , Células Intersticiais do Testículo/efeitos dos fármacos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Análise Multivariada , Compostos Fitoquímicos/química , Testosterona/metabolismo
6.
Pharmacogn Mag ; 10(40): 391-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25422536

RESUMO

BACKGROUND: Cervi Cornu Pantotrichum has been a well known traditional Chinese medicine, which is young horn of Cervus Nippon Temminck (Hualurong: HLR). At present, the methods used for the quality control of Cervi Cornu Pantotrichum show low specificity. OBJECTIVE: To describe a holistic method based on chemical characteristics and splenocyte-proliferating activities to evaluate the quality of HLR. MATERIALS AND METHODS: The nucleosides and bases from HLR were identified by high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS), and six of them were chosen to be used for simultaneous HPLC quantification according to the results of proliferation of mouse splenocytes in vitro. RESULTS: In this study, eight nucleosides and bases have been identified. In addition, uracil, hypoxanthine, uridine, inosine, guanosine, and adenosine were chosen to be used for simultaneous HPLC quantification. Simultaneous quantification of these six substances was performed on ten groups of HLR under the condition of a TIANHE Kromasil C18 column (5 µm, 4.6 mm × 250 mm i.d.) and a gradient elution of water and acetonitrile. Of the ten groups, HLR displayed the highest total nucleoside contents (TNC, sum of adenosine and uracil, 0.412 mg/g) with the strongest splenocyte-proliferating activities. CONCLUSION: These results suggest that TNC (such as particularly highly contained adenosine and uracil) in HLR has a certain correlation with the activity of splenocyte-proliferating, and it may be used as a quality control for HLR. This comprehensive method could be applied to other traditional Chinese medicines to ameliorate their quality control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA